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Abstract

This chapter is the second part of the multi-chapter devoted to the vision about TGD as
a generalized number theory.

1. Hyper-quaternions and octonions

The original idea was that space-time surfaces could be regarded as four-surfaces in 8-D
imbedding space with the property that the tangent spaces of these spaces can be locally
regarded as 4- resp. 8-dimensional number fields of quaternions and octonions.

The difficulties caused by the Euclidian metric signature of the number theoretical norm
have however forced to give up the original idea as such, and to introduce complexified octo-
nions and quaternions resulting by extending quaternionic and octonionic algebra by adding
imaginary units multiplied with

√−1. This spoils the number field property but the notion of
prime is not lost. The sub-space of hyper-quaternions resp. -octonions is obtained from the
algebra of ordinary quaternions and octonions by multiplying the imaginary part with

√−1.
The transition is the number theoretical counterpart of the transition from Riemannian to
pseudo-Riemannin geometry performed already in Special Relativity.

The problem is that H = M4 × CP2 cannot be endowed with a hyper-octonionic man-
ifold structure. Indeed, space-time surfaces are assumed to be hyper-quaternionic or co-
hyper-quaternionic 4-surfaces of 8-dimensional Minkowski space M8 identifiable as the hyper-
octonionic space HO. Since the hyper-quaternionic sub-spaces of HO with fixed complex
structure are labelled by CP2, each (co)-hyper-quaternionic four-surface of HO defines a 4-
surface of M4×CP2. One can say that the number-theoretic analog of spontaneous compact-
ification occurs.

2. Space-time-surface as a HQ or CHQ sub-manifold of hyper-octonionic imbedding space?

Space-time identified as a hyper-quaternionic (HQ) or co-hyper-quaternionic (coHQ) sub-
manifold of the hyper-octonionic space in the sense that the tangent space or normal space
of the space-time surface defines a hyper-quaternionic sub-algebra of the hyper-octonionic
tangent space of H at each space-time point, looks an attractive idea. Second possibility is
that the tangent space-algebra of the space-time surface is either associative or co-associative
at each point.

One can also consider possibility that the dynamics of the space-time surface is determined
from the requirement that space-time surface is algebraically closed in the sense that tangent
space at each point has this property. Also the possibility that the property in question is
associated with the normal space at each point of X4 can be considered. Some delicacies are
caused by the question whether the induced algebra at X4 is just the hyper-octonionic product
or whether the algebra product is projected to the space-time surface. If normal part of the
product is projected out the space-time algebra closes automatically.

The first guess would be that space-time surfaces are hyper-quaternionic (HQ) or co-hyper-
quaternionic (coHQ) sub-manifolds of hyper-octonionic space HO = M8 with the property
that complex structure is fixed and same at all points of space-time surface. This corresponds
to a global selection of a preferred octonionic imaginary unit. The automorphisms leaving
this selection invariant form group SU(3) identifiable as color group. The selections of hyper-
quaternionic sub-space under this condition are parameterized by CP2. This means that each
4-surface in HO defines a 4-surface in M4 × CP2 and one can speak about number-theoretic
analog of spontaneous compactification having of course nothing to do with dynamics. It
would be possible to make physics in two radically different geometric pictures: HO picture
and H = M4 × CP2 picture.

For a theoretical physicists of my generation it is easy to guess that the next step is
to realize that it is possible to fix the preferred octonionic imaginary at each point of HO
separately so that local S6 = G2/SU(3), or equivalently the local group G2 subject to SU(3)
gauge invariance, characterizes the possible choices of hyper-quaternionic structure with a
preferred imaginary unit. G2 ⊂ SO(7) is the automorphism group of octonions, and appears
also in M-theory. This local choice has interpretation as a fixing of the plane of non-physical
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polarizations and rise to degeneracy which is a good candidate for the ground state degeneracy
caused by the vacuum extremals.

OH − −M4 × CP2 duality allows to construct a foliation of HO by hyper-quaternionic
space-time surfaces in terms of maps HO → SU(3) satisfying certain integrability conditions
guaranteing that the distribution of hyper-quaternionic planes integrates to a foliation by 4-
surfaces. In fact, the freedom to fix the preferred imaginary unit locally extends the maps to
HO → G2 reducing to maps HO → SU(3)×S6 in the local trivialization of G2. This foliation
defines a four-parameter family of 4-surfaces in M4×CP2 for each local choice of the preferred
imaginary unit. The dual of this foliation defines a 4-parameter family co-hyper-quaternionic
space-time surfaces and it turns out that also these surfaces are needed.

Hyper-octonion analytic functions HO → HO with real Taylor coefficients provide a phys-
ically motivated ansatz satisfying the integrability conditions. The basic reason is that hyper-
octonion analyticity is not plagued by the complications due to non-commutativity and non-
associativity. Indeed, this notion results also if the product is Abelianized by assuming that
different octonionic imaginary units multiply to zero. A good candidate for the HO dynamics
is free massless Dirac action with Weyl condition for an octonion valued spinor field using
octonionic representation of gamma matrices and coupled to the G2 gauge potential defined
by the tensor 7× 7 tensor product of the imaginary parts of spinor fields.

The basic conjecture is that HQ and coHQ surfaces correspond to preferred extremals of
Kähler action. This conjecture has several variants. It could be that only asymptotic behavior
corresponds to HQ analytic function but that HQ and coHQ is a generic property. It could
also be that maxima of Kähler function correspond to this kind of 4-surfaces. The encouraging
hint is the fact that Hamilton-Jacobi coordinates appear naturally also in the construction of
general solutions of field equations.

3. The notion of Kähler calibration

Calibration is a closed p-form, whose value for a given p-plane is not larger than its volume
in the induced metric. What is important that if it is maximum for tangent planes of p-sub-
manifold, minimal surface with smallest volume in its homology equivalence class results.

The idea of Kähler calibration is based on a simple observation. A hyper-octonionic spinor
field defines a map M8 → H = M4 ×CP2 allowing to induce metric and Kähler form of H to
M8. Also Kähler action is well defined for the local hyper-quaternion plane.

The idea is that the non-closed 4-form associated the wedge product of unit tangent vectors
of HQ plane in M8 and saturating to volume for it becomes closed by multiplication with
Kähler action density LK . If LK is minimal for hyper-quaternion plane, hyper-quaternionic
manifolds define extremals of Kähler action for which the magnitudes of positive and negative
contributions to the action are separately minimized.

In coHQ case dual of the Kähler calibration results. In this case LK would be most
naturally maximal for HQ normal plane. There is also an alternative option but it is not
favored by physical considerations.

This variational principle is not equivalent with the absolute minimization of Kähler action.
Rather, in HQ case Universe would do its best to save energy, being as near as possible to
vacuum. Also vacuum extremals would become physically relevant (they carry non-vanishing
density gravitational energy). The non-determinism of the vacuum extremals would have an
interpretation in terms of the ability of Universe to engineer itself. The attractiveness of the
number theoretical variational principle from the point of calculability of TGD would be that
the initial values for the time derivatives of the imbedding space coordinates at X3 at light-
like 7-D causal determinant could be computed by requiring that the energy of the solution is
minimized. This could mean a computerizable construction of Kähler function.

In coHQ phase Universe would obviously maximize fluctuations and contrasts in accor-
dance with quantum criticality. One might say that these two phases give Universe kind of
hawk-dove polarity.

One can assign to a given 3-surface both HQ and cHQ 4-surface in the generic case and
the equivalence of descriptions requires that corresponding Kähler functions differ by the real
part of a holomorphic function of CH coordinates.
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4. Generalizing the notion of HO −H duality to quantum level

The obvious question is how the HO−H duality could generalize to quantum level. Num-
ber theoretical considerations combined with the general vision about generalized Feynman
diagrams as a generalization of braid diagrams lead to general formulas for vertices in HO
picture.

Simple arguments lead to the conclusion that strict duality can make sense only if the
hyper-octonionic spinor field is second quantized in some sense. One can imagine two, not
necessarily mutually exclusive, manners to quantize.

a) The construction of the spinor structure for the configuration space of 3-surfaces in
HO forces to conclude that HO spinor fields induced to X4 ⊂ HO are second quantized as
usual and define configuration space gamma matrices as super generators. The classical real-
analytic HO spinor fields would represent analogs of zero modes of H spinor fields. The second
quantized part of hyper-octonionic spinor fields induced to X4 ⊂ HO would have 1+1+3+3
decomposition having interpretation in terms of quarks and leptons and second quantized
oscillator operators would commute with hyper-octonionic units. The detailed realization of
HO − H duality suggests that the induced spinor fields at X4 ⊂ H resp. X4 ⊂ HO are
restrictions of H resp. HO spinor fields. This would hold for zero modes and could hold for
second quantized part too.

b) The original idea was that the real Laurent coefficients correspond to a complete set
of mutually commuting Hermitian operators having interpretation as observables. This is not
enough for configuration space geometry but is favored by quantum classical correspondence.
Space-time concept would be well defined only for the eigen states of these operators and
physical states are mapped to space-time surfaces. The Hermitian operators would naturally
correspond to the state space spanned by super Kac-Moody and super-canonical algebras,
and quantum states would have precise space-time counterparts in accordance with quantum-
classical correspondence.

The regions inside which the power series representing HO analytic function and matrix
elements of G2 rotation converge are identified as counterparts of maximal deterministic re-
gions of the space-time surface. The Hermitian operators replacing Laurent coefficients are
assumed to commute inside these regions identifiable also as coherence regions for the gener-
alized Schrödinger amplitude represented by the HO spinor field.

By quantum classical correspondence these regions would be correlates for the final states of
quantum jumps. The space-like 3-D causal determinants X3 bounding adjacent regions of this
kind represent quantum jumps. The hyper-octonionic part of the inner of the hyper-octonionic
spinor fields at the two sides of the discontinuity defined as an integral over X3 would give
a number identifiable as complex number when imaginary unit is identified appropriately.
The inner product would be identified as a representation of S-matrix element for an internal
transition of particle represented by 3-surface, that is 2-vertex.

For the generalized Feynman diagrams n-vertex corresponds to a fusion of n 4-surfaces
along their ends at X3. 3-vertex can be represented number theoretically as a triality of
three hyper-octonion spinors integrated over the 3-surface in question. Higher vertices can
be defined as composite functions of triality with a map (h1, h2) → h3 defined by octonionic
triality and by duality given by the inner product. More concretely, m+n vertex corresponds
in HO picture to the inner product for the local hyper-octonionic products of m outgoing and
n incoming hyper-octonionic spinor fields integrated over the 3-surface defining the vertex.
Both 2-vertices representing internal transitions and n > 2 vertices are completely fixed. This
should give some idea about the power of the number theoretical vision.

One can raise objections against the need for non-conventional quantization. The number
theoretic prescription does not apply to the second quantized parts of HO spinor fields and S-
matrix elements can be constructed using them so that two equivalent prescriptions of S-matrix
would emerge. On the other hand, TGD inspired quantum measurement theory suggests dual
codings S-matrix elements based on either quantum states or classical observables (zero modes)
in 1-1 correspondence with them.

5. Does TGD reduce to 8-D WZW string model in HO picture?
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Conservation laws suggests that in the case of non-vacuum extremals the dynamics of
the local G2 automorphism is dictated by field equations of some kind. The experience with
WZW model suggests that in the case of non-vacuum extremals G2 element could be written
as a product g = gL(h)g−1

R (h) of hyper-octonion analytic and anti-analytic complexified G2

elements. g would be determined by the data at hyper-complex 2-surface for which the tangent
space at a given point is spanned by real unit and preferred hyper-octonionic unit. Also
Dirac action would be naturally restricted to this surface. The theory would reduce in HO
picture to 8-D WZW string model both classically and quantally since vertices would reduce
to integrals over 1-D curves. The interpretation of generalized Feynman diagrams in terms of
generalized braid/ribbon diagrams and the unique properties of G2 provide further support
for this picture. In particular, G2 is the lowest-dimensional Lie group allowing to realize full-
powered topological quantum computation based on generalized braid diagrams and using
the lowest level k=1 Kac Moody representation. Even if this reduction would occur only in
special cases, such as asymptotic solutions for which Lorentz Kähler force vanishes or maxima
of Kähler function, it would mean enormous simplification of the theory.

6. Why hyper-quaternionicity corresponds to the minimization of Kähler action?

The resulting over all picture leads also to a considerable understanding concerning the
basic questions why (co)-hyper-quaternionic 4-surfaces define extrema of Kähler action and
why WZW strings would provide a dual for the description using Kähler action. The answer
boils down to the realization that the extrema of Kähler action minimize complexity, also
algebraic complexity, in particular non-commutativity. A measure for non-commutativity
with a fixed preferred hyper-octonionic imaginary unit is provided by the commutator of 3
and 3 parts of the hyper-octonion spinor field defining an antisymmetric tensor in color octet
representation: very much like color gauge field.

Color action is a natural measure for the non-commutativity minimized when the tangent
space algebra closes to complexified quaternionic, instead of complexified octonionic, algebra.
On the other hand, Kähler action is nothing but color action for classical color gauge field
defined by projections of color Killing vector fields. That WZW + Dirac action for hyper-
octonionic strings would correspond to Kähler action would in turn be the TGD counterpart
for the proposed string-YM dualities.

7. Various dualities and their physical counterparts

HO −H duality is only one representative in a family of dualities characterizing TGD. It
is not equivalent with HQ − coHQ duality, which seems however to be equivalent with the
electric-magnetic duality known for long. This duality relates descriptions based on space-like
partonic 2-surfaces and time-like string orbits. HO − H and HQ − coHQ dualities seem to
be closely correlated in the sense that HO picture is natural in HQ phase and H picture in
coHQ phase.

At configuration space level HO − H duality means roughly following. In H picture
spin and ew spin are spin-like quantum numbers whereas color is orbital quantum number
and cannot be seen at space-time level directly. In HO picture the roles of these quantum
numbers are changed. One could say that HO−H duality acts as a super-symmetry permuting
spin and orbital degrees of freedom of configuration space spinor fields. This duality allows
a surprisingly detailed understanding of almost paradoxical dualities of hadron physics, and
also explains proton spin crisis from first principles.

It seems possible to interpret HO−H and HQ−coHQ dualities as analogs of wave-particle
duality in the infinite-dimensional context. For HO − H duality the cotangent bundle of
configuration space CH would be the unifying notion. Position q in CH would be represented
by 3-surface whereas canonical momentum p would correspond to the same 3-surface but as
a surface in CHO with induced metric and Kähler structure inherited from HO defining the
tangent space of H. The notion of stringy configuration space might allow to understand also
M-theory dualities in this manner.
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1 Introduction

This chapter is second part of the multi-chapter devoted to the vision about TGD as a generalized
number theory. The basic theme of the chapter is that TGD allows two dual pictures about space-
time as a 4-surface. In the first picture space-times are regarded as hyper-quaternionic 4-surfaces
in 8-dimensional hyper-octonionic space HO = M8. In the second picture space-times are regarded
as 4-surfaces in M4 × CP2 satisfying field equations guaranteing absolute minimization of Kähler
action.

1.1 Development of ideas

The discussions for years ago with Tony Smith [17] stimulated very general ideas about space-time
surface as an associative, quaternionic sub-manifold of octonionic 8-space. Also the observation
that quaternionic and octonionic primes have norm squared equal to prime in complete accordance
with p-adic length scale hypothesis, led to suspect that the notion of primeness for quaternions,
and perhaps even for octonions, might be fundamental for the formulation of quantum TGD. The
original idea was that space-time surfaces could be regarded as four-surfaces in 8-D imbedding
space with the property that the tangent spaces of these spaces can be locally regarded as 4- resp.
8-dimensional quaternions and octonions.

It took some years to realize that the difficulties related to the realization of Lorentz invariance
might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√−1 and can be regarded as a sub-space
of complexified quaternions resp. octonions. The transition is the number theoretical counterpart
of the transition from Riemannian to pseudo-Riemannin geometry performed already in Special
Relativity. The loss of number field and even sub-algebra property is not fatal and has a clear
physical meaning. The notion of primeness is inherited from that for complexified quaternions
resp. octonions.

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4×CP2 could be endowed with a hyper-octonionic manifold structure. Indeed, space-time
surfaces are assumed to be hyper-quaternionic or co-hyper-quaternionic 4-surfaces of 8-dimensional
Minkowski space M8 identifiable as the hyper-octonionic space HO. Since the hyper-quaternionic
sub-spaces of HO with a fixed complex structure (containing preferred imaginary unit) are labelled
by CP2, each hyper-quaternionic and co-hyper-quaternionic four-surface of HO defines a 4-surface
of M4×CP2. One can loosely say that the number-theoretic analog of spontaneous compactification
emerges: this of course has nothing to do with dynamics. Hyper-variants of number fields make also
sense p-adically unlike the notions of number fields themselves. What deserves separate emphasis
is that the basic structure of the standard model would reduced to number theory.

Some notational conventions are in order before continuing. The fields of quaternions resp.
octonions having dimension 4 resp. 8 and will be denoted by Q and O. Their complexified
variants will be denoted by QC and OC . The sub-spaces of hyper-quaternions HQ and hyper-
octonions HO are obtained by multiplying the quaternionic and octonionic imaginary units by√−1. These sub-spaces are very intimately related with the corresponding algebras, and can be
seen as Euclidian and Minkowkian variants of the same basic structure. Also the Abelianized
versions of the hyper-quaternionic and -octonionic sub-spaces can be considered: these algebras
have a representation in the space of spinors of imbedding space H = M4 × CP2.
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1.2 Space-time-surface as a hyper-quaternionic or co-hyper-quaternionic
sub-manifold of hyper-octonionic imbedding space?

Space-time identified as a hyper-quaternionic sub-manifold of the hyper-octonionic space in the
sense that the tangent space of the space-time surface defines a hyper-quaternionic sub-space of
the hyper-octonionic tangent space of H at each space-time point, looks an attractive idea. Also
co-hyper-quaternionic surfaces correspond to space-time surfaces. Second possibility is that the
algebra generated by tangent space resp. normal space of the space-time surface is associative
(associativity resp. co-associativity). Also the possibility that the dynamics of the space-time
surface is determined from the requirement that space-time surface X4 is algebraically closed in
the sense that tangential or normal algebra at each point corresponds to a 4-D sub-algebra of
complexified octonions.

Some delicacies are caused by the question whether the induced algebra at X4 is just the hyper-
octonionic product or whether the algebra product is projected to the space-time surface. If the
normal part of the product is projected out, the space-time algebra closes automatically.

The first guess would be that space-time surfaces are hyper-quaternionic of co-hyper-quaternionic
sub-manifolds of hyper-octonionic space HO = M8 with the property that complex structure is
fixed and same at all points of space-time surface. This corresponds to a global selection of a pre-
ferred octonionic imaginary unit. The automorphisms leaving this selection invariant form group
SU(3) identifiable as color group. The selections of (co-)hyper-quaternionic sub-space under this
condition are parameterized by CP2. This means that each 4-surface in HO defines a 4-surface in
M4×CP2 and one can speak about number-theoretic analog of spontaneous compactification hav-
ing of course nothing to do with dynamics. It would be possible to make physics in two radically
different geometric pictures: HO picture and H = M4 × CP2 picture.

For a theoretical physicists of my generation it is easy to guess that the next step is to realize
that it is possible to fix the preferred octonionic imaginary at each point of HO separately so
that local S6 = G2/SU(3), or equivalently the local group G2 subject to SU(3) gauge invariance,
characterizes the possible choices of (co-)hyper-quaternionic structure with a preferred imaginary
unit. G2 ⊂ SO(7) is the automorphism group of octonions, and appears also in M-theory. This
local choice has interpretation as a fixing of the plane of non-physical polarizations and rise to
degeneracy which is a good candidate for the ground state degeneracy caused by the vacuum
extremals.

OH − −M4 × CP2 duality allows to construct a foliation of HO by (co-)hyper-quaternionic
space-time surfaces in terms of maps HO → SU(3) satisfying certain integrability conditions
guaranteing that the distribution of (co-)hyper-quaternionic planes integrates to a foliation by
4-surfaces. In fact, the freedom to fix the preferred imaginary unit locally extends the maps to
HO → G2 reducing to maps HO → SU(3) × S6 in the local trivialization of G2. This foliation
defines a four-parameter family of 4-surfaces in M4 × CP2 for each local choice of the preferred
imaginary unit. The dual of this foliation defines a 4-parameter family co-hyper-quaternionic
space-time surfaces. HQ and coHQ surfaces intersect generically in a finite number of points.

Hyper-octonion analytic functions HO → HO with real Taylor coefficients provide a physically
motivated ansatz satisfying the integrability conditions. The basic reason is that hyper-octonion
analyticity is not plagued by the complications due to non-commutativity and non-associativity.
Indeed, this notion results also if the product is Abelianized by assuming that different octonionic
imaginary units multiply to zero. A good candidate for the HO dynamics is free massless Dirac
action with Weyl condition for an octonion valued spinor field using octonionic representation of
gamma matrices and coupled to the G2 gauge potential defined by the tensor 7× 7 tensor product
of the imaginary parts of spinor fields.

The basic conjecture is that the absolute minima of Kähler action in H = M4 × CP2 corre-
spond to the hyper-quaternion analytic surfaces in HO. The map f : HO → S6 would probably
satisfy some constraints posed by the requirement that the resulting surfaces define solutions of
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field equations in M4 × CP2 picture. This conjecture has several variants. It could be that
only the asymptotic behavior corresponds to hyper-quaternion analytic function but that hyper-
quaternionicity is a general property of preferred extrema of Kähler action. The encouraging hint is
the fact that Hamilton-Jacobi coordinates coding for the local selection of the plane of non-physical
polarizations, appear naturally also in the construction of general solutions of field equations [D1].

It will be found that hyper-quaternion analytic surfaces cannot correspond to the absolute
minima of Kähler action. Rather the absolute value of the contribution from a region with given
sign of action density is either minimized or maximized. The most obvious guess is that HQ resp.
coHQ surfaces correspond to minima resp. maxima for the absolute values of these contributions.
In particular, small deformations of empty Minkowski space resp. CP2 type extremals would
correspond to HQ resp. coHQ surfaces. Also the dual Kähler action defined by the projection of
CP2 Kähler form to the normal space of space-time surface could be the action principle defining
coHQ 4-surfaces as its preferred extrema.

1.3 The notion of Kähler calibration

Calibration is a closed p-form, whose value for a given p-plane is not larger than its volume in the
induced metric. What is important that if it is maximum for tangent planes of p-sub-manifold,
minimal surface with smallest volume in its homology equivalence class results.

The idea of Kähler calibration is based on a simple observation. Hyper-octonionic spinor field
defines a map M8 → H = M4×CP2 allowing to induce metric and Kähler form of H to M8. Also
Kähler action is well defined for the local hyper-quaternion plane.

The idea is that the non-closed 4-form associated the wedge product of unit tangent vectors of
hyper-quaternionic plane in M8 and saturating to volume for it becomes closed by multiplication
with Kähler action density LK . If LK is minimal for hyper-quaternion plane, HQ manifolds define
extremals of Kähler action for which the magnitudes of positive and negative contributions to the
action are separately minimized. If LK is maximal it could correspond coHQ surfaces for which
maximization occurs.

This variational principle is not equivalent with the absolute minimization of Kähler action.
Rather, HQ Universe would do its best to save energy, being as near as possible to vacuum. Also
vacuum extremals would become physically relevant (they carry non-vanishing density gravita-
tional energy). The non-determinism of the vacuum extremals would have an interpretation in
terms of the ability of Universe to engineer itself. The attractiveness of the number theoretical
variational principle from the point of calculability of TGD would be that the initial values for
the time derivatives of the imbedding space coordinates at X3 at light-like 7-D causal determinant
could be computed by requiring that the energy of the solution is minimized. This could mean a
computerizable construction of Kähler function.

If maximization occurs in coHQ case, contrasts defined by the values of Kähler action in
regions of definite sign of action density are maximized in coHQ phase. The obvious objection is
that this option de-stabilizes the theory by implying large fluctuations but one might argue that
quantum criticality requires this. This option does not necessarily imply energy maximization.
For instance, CP2 type extremals are vacuum extremals. If coHQ corresponds to a minimization
for the dual of Kähler action in the sense described, situation changes. For instance, CP2 type
extremals correspond to a vanishing dual of Kähler action density. It must be emphasized that
HQ and coHQ phases need not be dual to each other but could correspond to disjoint regions of
configuration space of 3-surfaces.

1.4 Generalizing the notion of HO −H duality to quantum level

The obvious question is how the HO − H duality could generalize to quantum level. Number
theoretical considerations combined with the general vision about generalized Feynman diagrams
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as a generalization of braid diagrams lead to general formulas for vertices in HO picture.
Simple arguments lead to the conclusion that strict duality can make sense only if the hyper-

octonionic spinor field is second quantized in some sense. One can imagine two, not necessarily
mutually exclusive, manners to quantize.

1. The construction of the spinor structure for the configuration space of 3-surfaces in HO
forces to concluded that HO spinor fields induced to X4 ⊂ HO are second quantized as
usual and define configuration space gamma matrices as super generators. The classical real-
analytic HO spinor fields would represent analogs of zero modes of H spinor fields. The
second quantized part of hyper-octonionic spinor fields induced to X4 ⊂ HO would have
1 + 1 + 3 + 3 decomposition having interpretation in terms of quarks and leptons and second
quantized oscillator operators would commute with hyper-octonionic units. The detailed
realization of HO − H duality suggests that the induced spinor fields at X4 ⊂ H resp.
X4 ⊂ HO are restrictions of H resp. HO spinor fields. This would hold for zero modes and
could hold for second quantized part too.

2. The original idea was that the real Laurent coefficients correspond to a complete set of
mutually commuting Hermitian operators having interpretation as observables. This is not
enough for configuration space geometry but is favored by quantum classical correspondence.
Space-time concept would be well defined only for the eigen states of these operators and
physical states are mapped to space-time surfaces. The Hermitian operators would naturally
correspond to the state space spanned by super Kac-Moody and super-canonical algebras,
and quantum states would have precise space-time counterparts in accordance with quantum-
classical correspondence.

The regions inside which the power series representing HO analytic function and matrix elements of
G2 rotation converge are identified as counterparts of maximal deterministic regions of the space-
time surface. The Hermitian operators replacing Laurent coefficients are assumed to commute
inside these regions identifiable also as coherence regions for the generalized Schrödinger amplitude
represented by the HO spinor field.

By quantum classical correspondence these regions would be correlates for the final states of
quantum jumps. The space-like 3-D causal determinants X3 bounding adjacent regions of this kind
represent quantum jumps. The hyper-octonionic part of the inner of the hyper-octonionic spinor
fields at the two sides of the discontinuity defined as an integral over X3 would give a number
identifiable as complex number when imaginary unit is identified appropriately. The inner product
would be identified as a representation of S-matrix element for an internal transition of particle
represented by 3-surface, that is 2-vertex.

For the generalized Feynman diagrams n-vertex corresponds to a fusion of n 4-surfaces along
their ends at X3. 3-vertex can be represented number theoretically as a triality of three hyper-
octonion spinors integrated over the 3-surface in question. Higher vertices can be defined as com-
posite functions of triality with a map (h1, h2) → h3 defined by octonionic triality and by duality
given by the inner product. More concretely, m+n vertex corresponds in HO picture to the inner
product for the local hyper-octonionic products of m outgoing and n incoming hyper-octonionic
spinor fields integrated over the 3-surface defining the vertex. Both 2-vertices representing internal
transitions and n > 2 vertices are completely fixed. This should give some idea about the power
of the number theoretical vision.

One can raise objections against the need for non-conventional quantization. The number
theoretic prescription does not apply to the second quantized parts of HO spinor fields and S-
matrix elements can be constructed using them so that two equivalent prescriptions of S-matrix
would emerge. On the other hand, TGD inspired quantum measurement theory suggests dual
codings S-matrix elements based on either quantum states or classical observables (zero modes) in
1-1 correspondence with them.
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1.4.1 Does TGD in HO picture reduce to 8-D WZW string model?

Conservation laws suggests that in the case of non-vacuum extremals the dynamics of the local
G2 automorphism is dictated by field equations of some kind. The experience with WZW model
suggests that in the case of non-vacuum extremals G2 element could be written as a product
g = gL(h)g−1

R (h) of hyper-octonion analytic and anti-analytic complexified G2 elements. g would
be determined by the data at hyper-complex 2-surface for which the tangent space at a given point
is spanned by real unit and preferred hyper-octonionic unit. Also Dirac action would be naturally
restricted to this surface. The theory would reduce in HO picture to 8-D WZW string model
like theory both classically and quantally. The duality of partonic H description with stringy HO
description suggests that string orbits correspond to surfaces at which time like causal determinants
intersect.

The interpretation of generalized Feynman diagrams in terms of generalized braid/ribbon dia-
grams and the unique properties of G2 provide further support for this picture. In particular, G2 is
the lowest-dimensional Lie group allowing to realize full-powered topological quantum computation
based on generalized braid diagrams and using the lowest level k=1 Kac Moody representation.
Even if this reduction would occur only in special cases, such as asymptotic solutions for which
Lorentz Kähler force vanishes or maxima of Kähler function, it would mean enormous simplification
of the theory.

1.4.2 Why hyper-quaternionicity corresponds to the minimization of Kähler action?

The resulting over all picture leads also to a considerable understanding concerning the basic ques-
tions why hyper-quaternionic 4-surfaces define extrema of Kähler action and why WZW strings
would provide a dual for the description using Kähler action. The answer boils down to the re-
alization that the extrema of Kähler action minimize complexity, also algebraic complexity, in
particular non-commutativity. A measure for non-commutativity with a fixed preferred hyper-
octonionic imaginary unit is provided by the commutator of 3 and 3 parts of the hyper-octonion
spinor field defining an antisymmetric tensor in color octet representation: very much like color
gauge field. Color action is a natural measure for the non-commutativity minimized when the tan-
gent space algebra closes to complexified quaternionic, instead of complexified octonionic, algebra.
On the other hand, Kähler action is nothing but color action for classical color gauge field defined
by projections of color Killing vector fields. That WZW + Dirac action for hyper-octonionic strings
would correspond to Kähler action would in turn be the TGD counterpart for the proposed string-
YM dualities. If the dual of Kähler action defines coHQ 4-surfaces an analogous interpretation
holds true.

1.4.3 Various dualities and their physical counterparts

HO −H duality is only one representative in a family of dualities characterizing TGD. It is not
equivalent with HQ − coHQ duality, which seems however to be equivalent with the electric-
magnetic duality known for long. This duality relates descriptions based on space-like partonic
2-surfaces and time-like string orbits. HO − H and HQ − coHQ dualities seem to be closely
correlated in the sense that HO picture is natural in HQ phase and H picture in coHQ phase.

At configuration space level HO − H duality means roughly following. In H picture spin
and ew spin are spin-like quantum numbers whereas color is orbital quantum number and cannot
be seen at space-time level directly. In HO picture the roles of these quantum numbers are
changed. One could say that HO − H duality acts as a super-symmetry permuting spin and
orbital degrees of freedom of configuration space spinor fields. This duality allows a surprisingly
detailed understanding of almost paradoxical dualities of hadron physics, and also explains proton
spin crisis from first principles.
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It seems possible to interpret HO −H and HQ − coHQ dualities as analogs of wave-particle
duality in the infinite-dimensional context. For HO − H duality the cotangent bundle of con-
figuration space CH would be the unifying notion. Position q in CH would be represented by
3-surface whereas canonical momentum p would correspond to the same 3-surface but as a surface
in CHO with induced metric and Kähler structure inherited from HO defining the tangent space
of H. The notion of stringy configuration space and the generalization of HQ-coHQ duality to
dimension-codimension duality might allow to understand also M-theory dualities in this manner.

2 Quaternion and octonion structures and their hyper coun-
terparts

In this section the notions of quaternion and octonion structures and their hyper counterparts
are introduced with strong emphasis on the physical interpretation. Literature contains several
variants of these structures (Hyper Kähler structure and quaternion Kähler structure [36]). The
notion introduced here is inspired by the physical motivations coming from TGD and involves in
an essential manner the notions of (hyper-)quaternion and (hyper-)octonion analyticity.

2.1 Motivations and basic ideas

Before going to details it is useful to make clear the constraints on the concept of the hyper-
octonionic structure implied by TGD view about physics.

M4×CP2 cannot certainly be regarded as having any global octonionic structure (for instance
in the sense that it could be regarded as a coset space associated with some exceptional group).
There are however clear indications for the importance of the hyper-quaternionic and -octonionic
structures.

1. SU(3) is the only simple 8-dimensional Lie-group and acts as the group of isometries of
CP2: if SU(3) had some kind of octonionic structure, CP2 would become unique candidate
for the space S. The decomposition SU(3) = h + t to U(2) subalgebra and its complement
corresponds rather closely to the decomposition of (hyper-)octonions to (hyper-)quaternionic
sub-space and its complement. The electro-weak U(2) algebra has a natural 1+3 decompo-
sition and generators allow natural hyper-quaternionic structure. Hyper Kähler structure
with three covariantly constant quaternionic imaginary units represented Kähler forms is
however not possible. The components of the Weyl tensor of CP2 behave with respect to
multiplication like quaternionic imaginary units but only one of them is covariantly constant
so that hyper-Kähler structure is not possible.

2. M4
+ has a natural 1+3 decomposition and a unique cosmic time coordinate defined as the

light cone proper time. Hyper-quaternionic structure is consistent with the Minkowskian
signature of the inner product and hyper quaternion units have a natural representation in
terms of covariantly constant self-dual symplectic forms and their contractions with sigma
matrices.

In the following only (hyper-)octonion structure is considered: the generalization to the (hyper-
)quaternion case is trivial. One can imagine two approaches to the definition of (hyper)-octonion
structure.

1. (Hyper-)octonionic manifolds are obtained by gluing together coordinate patches using (hyper-
)octonion analytic functions with real Laurent coefficients (this guarantees associativity and
commutativity). This definition does not yet involve metric or any other structures (such
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as Kähler structure). This structure seems to be a necessary ingredient of any definition
confirming in spirit with TGD.

2. If the manifold is endowed with metric, octonionic structure should be defined as a local
tangent space structure analogous to eight-bein structure and local gauge algebra structures.
This can be achieved by contracting octo-bein vectors with the standard octonionic basis
to get octonion form Ik. Each vector field ak defines naturally octonion field A = akIk.
The product of two vector fields can be defined by the octonionic multiplication and this
leads to the introduction of a tensor field dklm of these structure constants obtained as the
contraction of the octobein vectors with the octonionic structure constants dabc. Hyper-
octonion structure can defined in a completely analogous manner.

A possibly relevant notion is the induction of (hyper-)octonion structure.

1. It is possible to induce octonionic structure to any 4-dimensional space-time surface by
forming the projection of Ik to the space-time surface and redefining the products of Ik:s by
dropping away that part of the product, which is orthogonal to the space-time surface. This
means that the structure constants of the new 4-dimensional algebra are the projections
of dklm to the space-time surface. One can also define similar induced algebra in the 4-
dimensional normal space of the space-time surface.

2. The projection is not absolutely necessary and its is possible to have quaternionic associative
tangent spaces without this assumption. As a matter fact, this option seems to be the
physically favored one, and leads naturally to the hyper-quaternionicity constraint on space-
time surfaces. An attractive hypothesis is that the induced tangential or normal space algebra
is associative or hyper-quaternionic algebra. Also co-associativity defined as associativity of
the normal space algebra is possible. This property would give for the 4-dimensionality of
the space-time surface quite special algebraic meaning.

2.2 Octonions and quaternions

In the following only the basic definitions relating to octonions and quaterions are given. There
is an excellent article by John Baez [29] describing octonions and their relations to the rest of
mathematics and physics.

Octonions can be expressed as real linear combinations
∑

k xkIk of the octonionic real unit
I0 = 1 (counterpart of the unit matrix) and imaginary units Ia, a = 1, ..., 7 satisfying

I2
0 = I0 ≡ 1 ,

I2
a = −I0 = −1 ,

I0Ia = Ia . (1)

Octonions are closed with respect to the ordinary sum of the 8-dimensional vector space and with
respect to the octonionic multiplication, which is neither commutative (ab 6= ba in general) nor
associative (a(bc) 6= (ab)c in general).

A concise manner to summarize octonionic multiplication is by using octonionic triangle. Each
line (6 altogether) containing 3 octonionic imaginary units forms an associative triple which to-
gether with I0 = 1 generate a division algebra of quaternions. Also the circle spanned by the 3
imaginary units at the middle of the sides of the triangle is associative triple. The multiplication
rules for each associative triple are simple:
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Figure 1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units
hold true. The arrow defines the orientation for each associative triplet. Note that the product for
the units of each associative triplets equals to real unit apart from sign factor.

IaIb = εabcIc , (2)

where εabc is 3-dimensional permutation symbol. εabc = 1 for the clockwise sequence of vertices
(the direction of the arrow along the circumference of the triangle and circle). As a special case
this rule gives the multiplication table of quaternions. A crucial observation for what follows is
that any pair of imaginary units belongs to one associative triple.

The non-vanishing structure constants d c
ab of the octonionic algebra can be read directly from

the octonionic triangle. For a given pair Ia, Ib one has

IaIb = d c
ab Ic ,

dab c = ε c
ab ,

I2
a = d 0

aa I0 = −I0 ,

I2
0 = d 0

00 I0 ,

I0Ia = d a
0a Ia = Ia . (3)

For εabc c belongs to the same associative triple as ab.
Non-associativity means that is not possible to represent octonions as matrices since matrix

product is associative. Quaternions can be represented and the structure constants provide the
defining representation as Ia → dabc, where b and c are regarded as matrix indices of 4 × 4
matrix. The algebra automorphisms of octonions form 14-dimensional group G2, one of the so
called exceptional Lie-groups. The isotropy group of imaginary octonion unit is the group SU(3).
The Euclidian inner product of the two octonions is defined as the real part of the product xy

(x, y) = Re(xy) =
∑

k=0,..7

xkyk ,

x = x0I0 −
∑

i=1,..,7

xkIk , (4)
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and is just the Euclidian norm of the 8-dimensional space.

2.3 Hyper-octonions and hyper-quaternions

The Euclidicity of the quaternion norm suggests that octonions are not a sensible concept in TGD
context. One can imagine two manners to circumvent this conclusion.

1. M4 metric as real part of product...

Minkowskian metric for octonions and quaternions is obtained by identifying Minkowski inner
product xy as the real counterpart of the product

x · y ≡ Re(xy) = x0y0 −
∑

k

xkyk . (5)

SO(1, 7) (SO(1, 3) in quaternionic case) Lorentz invariance appears completely naturally as the
symmetry of the real part of the octonion (quaternion) product and hence of octonions/quaternions
and there is no need to perform the complexification of the octonion algebra. Furthermore, only
the signature (1, 7) ((1, 3) in the quaternionic case) is possible and this would raise M4

+ × CP2 in
a preferred position.

This norm does not give rise to a number theoretic norm defining a homomorphism to real
numbers. Indeed, the number theoretic norm defined by the determinant of the linear mapping
defined by the multiplication with quaternion or octonion, is inherently Euclidian. This is in
conflict with the idea that quaternionic and octonionic primes and their infinite variants should
have key role in TGD [E3].

2. ....or hyper-octonions and -quaternions?

Hyper-octonions and hyper-quaternions provide a possible solution to these problems. These
are obtained by multiplying imaginary units by

√−1. These numbers form a sub-space of com-
plexified octonions/quaternions and the cross product of imaginary parts leads out from this sub-
space. In this case number theoretic norm induced from QC/OC gives the fourth/eighth power
of Minkowski length and Lorentz group acts as its symmetries. Light-like hyper-quaternions and
-octonions causing the failure of the number field property have also a clear physical interpretation.

A criticism against the notion of hyper-quaternionic and octonionic primeness is that the tan-
gent space as an algebra property is lost and the notion of primeness is inherited from QC/OC .
Also non-commutativity and non-associativity could cause difficulties. The proposed representa-
tion of hyper-quaternionic sub-manifolds in terms of real-analytic hyper-octonion analytic maps is
equivalent with the the version based on maps using Abelian version of hyper-octonions for which
the products of different imaginary units give zero. This observation allows to understand why
the potential difficulties associated with non-commutativity and non-associativity can be circum-
vented.

2.4 p-Adic length scale hypothesis and quaternionic and hyper-quaternionic
primes

p-Adic length scale hypothesis [E5] states that fundamental length scales correspond to the p-adic
length scales proportional to

√
p, p prime. Even more: the p-adic primes p ' 2k, k prime or possibly

power of prime, are especially interesting physically. The so called elementary particle-blackhole
analogy gives a partial theoretical justification for this hypothesis [E5]. A strong empirical support
for the hypothesis comes from p-adic mass calculations [F2, F3, F4, F5].

Elementary particles correspond to the so called CP2 type extremals in TGD Universe [D1, E5].
Elementary particle horizon can be defined as a surface at which the Euclidian signature of the
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metric of the space-time surface containing topologically condensed CP2 type extremal, changes
to Minkowskian signature. The generalization of the Hawking-Bekenstein formula relates the
real counterpart of the p-adic entropy associated with the elementary particle to the area of the
elementary particle horizon. If one requires that the radius of the elementary particle horizon
corresponds to a p-adic length scale: R = L(k) or kn/2L(k) where k is prime, then p is automatically
near to 2kn

and p-adic length scale hypothesis is reproduced! The proportionality of length scale
to
√

p, rather than p, follows from p-adic thermodynamics for mass squared (!) operator and from
Uncertainty Principle.

What Tony Smith [17] suggested, was a beautiful connection with number theory based on the
generalization of the concept of a prime number. In the so called D4 lattice regarded as consisting
of integer quaternions, one could identify prime quaternions as the generators of the multiplicative
algebra of the integer quaternions. From the basic properties of the quaternion norm it follows
directly that prime quaternions correspond to the 3-dimensional spheres R2 = p, p prime, with
integer value E4 coordinates. The worries are of course raised by the Euclidian signature of the
number theoretical norm of quaternions.

2.4.1 Hyper-quaternionic and -octonionic primes and effective 2-dimensionality

The notion of prime generalizes to hyper-quaternionic and -octonionic case. The factorization
n2

0 − n2
3 = (n0 + n3)(n0 − n3) implies that any hyper-quaternionic and -octonionic primes can be

represented as (n0, n3, 0, ...) = (n3 + 1, n3, 0, ...), n3 = (p− 1)/2 for p > 2. p = 2 is exceptional: a
representation with minimal number of components is given by (2, 1, 1, 0, ...). The interpretation
of hyper-quaternionic primes (or integers) as four-momenta suggests itself. Note that it is not
possible to find a rest system for a massive particle unless the energy is allowed to be a square
root of integer.

The notion of ”irreducible” (see Appendix of [E1]) is defined as the equivalence class of primes
related by a multiplication with a unit (integer with unit norm) and is more fundamental than
that of prime. All Lorentz boosts of a hyper prime obtained by multiplication with units labelling
SO(D−1) cosets of SO(D−1, 1), D = 4, 8 to a hyper prime, combine to form a hyper irreducible.
Note that the units cannot correspond to real particles in the arithmetic quantum field theory in
which primes correspond to D-momenta labelling the physical states.

If the situation for p > 2 is effectively 2-dimensional in the sense that it is always possible to
transform the hyper prime to a 2-component form by multiplying it by a suitable unit representing
Lorentz boost, the theory for time-like hyper primes effectively reduces to the hyper-complex case.
This hypothesis is physically highly attractive since it would imply number theoretic universality
and conform with the effective 2-dimensionality.

Hyper-complex numbers H2 define the maximal sub-algebra of HQ and HO. In the case of H2

the failure of the number field property is due to the existence of light-like hyper-complex numbers
with vanishing norm. The light-likeness of hyper-quaternions and -octonions is expected to have
a deep physical significance and could define a number theoretic analog of propagator pole and
light-like 3-D and 7-D causal determinants.

Also the rigorous notion of hyper primeness seems to require effective 2-dimensionality. If
effective 2-dimensionality holds true, hyper integers have a decomposition to a product of hyper
primes multiplied by a suitable unit. The representation is obtained by Lorentz boosting the hyper
integer first to a 2-component form and then decomposing it to a product of hyper-complex primes.
Note that the hyper-octonionic primes related by SO(7, 1) boosts need not represent physically
equivalent states.

The situation becomes more complex if also space-like hyper primes with negative norm squared
n2

0 − n2
1 − ... = −p are allowed. Gaussian primes with p mod4 = 1 would be representable as

primes of form (0, n1, n2, 0): n2
1 + n2

2 = p. If all quaternionic primes allow a representation as
a quaternionic integer with three non-vanishing components, they can be identified as space-like
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hyper-quaternionic primes. Space-like primes with p mod 4 = 3 have at least 3 non-vanishing
components which are odd integers. By their tachyonity space-like primes are not physically
favored.

2.4.2 Hyper-quaternionic hyperboloids and p-adic length scale hypothesis

In the hyper-quaternionic case the 3-dimensional sphere R2 = p is replaced with Lobatchevski
space (hyperboloid of M4 with points having integer valued M4 coordinates. Hence integer valued
hyper-quaternions allow interpretation as quantized four-momenta.

Prime mass hyperboloids correspond to n = p. It is not possible to multiply hyperboloids
since the cross product leads out of hyper sub-space. It is however possible to multiply the 2-
dimensional hyperboloids and act on these by units to get full 3-D hyperboloids. The powers
of hyperboloid p correspond to a multiplicatively closed structure consisting of powers pn of the
hyperboloid p. At space-time level the hyper-quaternionic lattice gives rise to a one-dimensional
lattices of hyperboloidal lattices labelled by powers pn, and the values of light-cone proper time
a ∝ √

p are expected to define fundamental p-adic time scales.
Also the space-like hyperboloids R2 = −n are possible and the notion of primeness makes sense

also in this case. The space-like hyperboloids define one-dimensional lattice of space-like hyper-
quaternionic lattices and an explanation for the spatial variant of the p-adic length scale hypothesis
stating that p-adic length scales are proportional to

√
p emerges in this manner naturally.

2.4.3 Euclidian version of the p-adic length scale hypothesis

Hyper-octonionic integers have a decomposition into hyper-quaternion and a product of
√−1K

with quaternion so that quaternionic primes can be identified as hyper-octonionic space-like primes.
The Euclidian version of the p-adic length scale hypothesis follows if one assumes that the Euclidian
piece of the space-time surrounding the topologically condensed CP2 type extremal can be approxi-
mated with a quaternion integer lattice with radius squared equal to r2 = kn, k prime. One manner
to understand the finiteness in the time direction is that topological sum contacts of CP2 type
extremal are not static 3-dimensional topological sum contacts but genuinely four-dimensional:
3-dimensional contact is created, expands to a maximum size and is gradually reduced to point.
The Euclidian space-time volume containing the contact would correspond to an Euclidian region
R2 = kn of space-time. The distances of the lattice points would be measured using the induced
metric. These contacts could have arbitrarily long duration from the point of view of external
observer since classical gravitational fields give rise to strong time dilation effects (strongest on the
boundary of the Euclidian region where the metric becomes degenerate with the emergence of a
light like direction).

Lattice structure is essential for the argument. Lattice structures of type D4 indeed emerge
naturally in the construction of the p-adic counterparts of the space-time surfaces as p-adically
analytic surfaces. The essential idea is to construct the p-adic surface by first discretizing space-
time surface using a p-adic cutoff in k:th pinary digit and mapping this surface to its p-adic
counterpart and complete this to a unique smooth p-adically analytic surface.

This leads to a fractal construction in which a given interval is decomposed to p smaller intervals,
when the resolution is increased. In the 4-dimensional case one naturally obtains a fractal hierarchy
of nested D4 lattices. The interior of the elementary particle horizon with Euclidian signature
corresponds to some subset of the quaternionic integer lattice D4: an attractive possibility is that
the absolute minimization of the Kähler action and the maximization of the Kähler function force
this set to be a ball R2 ≤ kn, k prime.
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2.5 Manifolds with (hyper-)octonion and (hyper-)quaternion structure

The definition of the notions of (hyper-)octonionic and (hyper-)quaternionic manifolds is straight-
forward. Since vielbein structure determines the geometry of the imbedding space completely,
it seems natural to relate (hyper-)octonionic structure to the vielbein structure so that (hyper-
)octonion structure becomes essentially metric concept. In the following only the Minkowskian
case is considered in detail with restriction to hyper-quaternionic/octonionic case.

2.5.1 The notion of hyper-quaternionic/-octonionic analyticity

The crucial observation is that hyper-analytic series with real coefficients does not lead out from the
hyper-subspace. Hence coordinate atlases based on hyper-analytic coordinate maps are possible
and the notions of hyper-quaternionic and -octonionic manifolds are well-defined.

Since cross product terms in the (hyper-)octonionic Laurent series with real coefficients vanish,
the real-analytic (hyper-)quaternionic and (hyper)-octonionic power series are expressible as

h0 + h → ah0 + bh , (6)

where the coefficients a and b depend only on h0 and |h|2. This means that the result is linear
in the imaginary part of h and in this case non-commutativity and non-associativity do not cause
difficulties in the definition of derivatives. Hence the notion (hyper-)octonionic analytic map of HO
to itself is well-defined and the notion of (hyper-)octonionic manifold makes sense since coordinate
maps relating different coordinate patches can be (hyper-)quaternionic.

A more general HQ/HO analytic map results by allowing a global rotation of h induced by an
automorphism of (hyper-)quaternions or (hyper-)octonions. Since a and b depend on automorphism
invariants only, these automorphisms commute with HQ/HO analytic maps. Even more general
notion of hyper-analyticity results when this rotation is allowed to be local.

The sub-group of the automorphism group G2 ⊂ SO(7) of octonions leaving a given imaginary
octonion unit, say e7 invariant, is SU(3) and with respect to this group octonions decompose to
two color singlets plus triplet and anti-triplet. The tensor product of triplets gives rise to a color
octet defining an element of SU(3) Lie algebra playing a crucial role in the proposed representation
of space-time surfaces as hyper-quaternionic 4-surfaces of HO defined by hyper-octonion analytic
maps.

2.5.2 Metric and vielbein

The ordinary inner product Re(xy) can be used with conjugation acting on the hyper-octonionic/-
quaternionic imaginary units but leaving

√−1 invariant. This inner product can be lifted to the
ordinary inner product for vector fields expressible as a = akIk in terms of the hyper vector fields
related to the standard hyper basis Ia by a multiplication with hyper vielbein’ ea

k,

Ik = ea
kIa , (7)

where Ia, a 6= 0, is multiplied with
√−1 in hyper-case. Each local vielbein SO(D − 1, 1) rotation

gives rise to a new basis at each point of the MD (D = 4, 8) but respects hyper inner product.
Hence one can say that hyper structure is consistent with local SO(D − 1, 1) gauge invariance.

One cannot perform arbitrary vierbein rotations of the quaternion units as is clear from the
fact that I0, which appears in a special role in the inner product, must be invariant under the
automorphisms. In the case of the (hyper-)quaternions the automorphism group is SO(3). In
the case of the future light cone, the invariance of I0 is natural if it corresponds to the Lorentz
invariant proper time coordinate. In the case of hyper-octonions the allowed transformations must
respect octonionic multiplication table and correspond to the group G2.
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2.5.3 The notions of (hyper-)octonion and (-)quaternion Hermitian manifolds

The notion of Hermitian metric is a crucial element of conformal invariance and it would be
highly desirable to generalize this notion. The generalization of the notion of Hermitian metric
forces naturally the selection of preferred quaternionic and complex planes in a manifold possessing
octonion Hermitian structure.

1. Quaternionic case

For quaternions the line element can be expressed a a bilinear dqdq. Thus q and its Hermitian
conjugate resulting as anti-automorph define the first pair of coordinates. In order to obtain the
second pair, the introduction of a preferred imaginary unit, call it e1, is needed. The automorphic
conjugate q1 = q0 − q1e1 + q2e2 − q3e1e2 and its Hermitian conjugate define the second coordinate
pair, and the line element can be expressed as

ds2 =
1
2

[dqdq + dq1dq1] .

The first guess is that for a general 4-manifold with quaternion Hermitian structure the gener-
alization of the metric would read as

ds2 = Fdqdq + Gdq1dq1 .

Here F and G are functions of quaternion coordinates. The requirement that real quaternion
analyticity provides a general solution to the Laplacian equation

∂α(gαβg1/4∂β)Ψ = 0 (8)

associated with a half density (spinor field most naturally) requires that the metric disappears
from the equation. This implies a stronger condition

ds2 = F [dqdq + dq1dq1] . (9)

The condition is so strong that space-time surfaces in M4 × CP2 are not expected to satisfy it.
The condition might however hold true for the hyper-quaternionic 4-surfaces of HO.

Real-analytic quaternion transformations are expected to induce a mere scaling of the metric
determinant. For a general manifold with quaternion Hermitian structure the choice of the complex
sub-space of the tangent space of quaternions is expected to depend on the point of the manifold
and defines a map from the manifold to the sphere S2 labelling the complex tangent planes of Q.
The argument generalizes in a trivial manner to the case of HQ. In this case a SO(3) connection
is needed in order to define the parallel translation.

2. Octonionic case

In the octonionic case quaternionic sub-space of octonions is needed in order to define the
Hermitian structure. The four automorphic quaternion conjugates induce three automorphic con-
jugates oi, i = 2, 3, 4 of the octonion variable o1 = q1 + e3q2. The variables oi and their octonionic
Hermitian conjugates define 8 octonionic variables. The line element of octonionic manifold in the
general case has the same form as in the quaternionic case. Half densities as natural real-analytic
solutions of Laplace equation are replaced with 1/4-densities in this case.

In the general case the local quaternionic tangent sub-space depends on the point of the oc-
tonionic manifold. Hence the introduction of octonion Hermitian structure automatically forces
the selection of a local quaternion sub-space and the Hermitian structure for the latter forces the
selection of a local complex sub-space.

21



These considerations generalize in a trivial manner to the hyper-octonionic case. The general-
ization of the concept of Hermiticity provides support for the idea that HO is foliated by space-time
surfaces defined by an integrable distribution of hyper-quaternionic planes of the tangent space of
HO. Also the local selection of the preferred imaginary unit emerges naturally if the space-time
surfaces are required to have a quaternion Hermitian structure.

2.5.4 Can one regard CP2 and M4
+ as Euclidian and Minkowskian variants of hyper-

quaternionic projective space?

The notion of projective space generalizes also to the hyper-quaternionic case and one can ask
whether it is possible to interpret future light-cone M4

+ and CP2 as hyper-quaternionic projective
spaces.

The points of a 1-dimensional hyper-quaternionic projective space HP1 would be pairs of points
(h1, h2) with the equivalence relation (h1, h2) ≡ λ(h1, h2), λ 6= 0. The two projective coordinate
charts can be defined in the standard manner as (ha = h1/h2, 1) or as (1, hb = h2/h1). The
generalization to the case of HPn is obvious.

In the case of hyper-quaternionic numbers the failure of the number field property implies
that the coordinate singularities corresponding to q1 = 0 resp. q2 = 0 are replaced by coordinate
singularities corresponding to all light-like values of h1 resp. h2. Thus the space in question can be
interpreted as the intersection of future and past light-cones. The boundaries of the cones intersect
at points where both h1 and h2 are light-like. This brings in mind the the fact that S-matrix involves
in the minimal situation future and past directed light-cones with partonic 2-surfaces representing
incoming and outgoing particles located at the boundaries of these light-cones.

This observation supports the view that M4
+(a1) ∩ M4

−(a2) and CP2 emerge naturally as
Minkowskian and Euclidian variants of the hyper-quaternionic projective space.

1. If the metric of the hyper-quaternionic projective space has Minkowskian signature then the
natural identification of HP1 is as M4

+(a1) ∩ M4
−(a2). The boundary of HP1 is metrically

2-dimensional but topologically 3-dimensional. Light-cone boundary is hyper-quaternionic
space itself since scalings respect the light-likeness of the projective coordinates. It is possible
to construct several projective spaces by posing conditions on projective scalings such as
λ0 > 0 and selecting regions of M4 properly by posing conditions on the sign of M4 time
coordinate. For instance, M4 with light-cone boundary excluded is possible and becomes full
M4 when the boundary is added.

2. If the metric of the hyper-quaternionic projective space has an Euclidian signature, metric 2-
dimensionality requires topological 2-dimensionality, and it is necessary to identify the points
having different values of the light-like radial coordinate and the boundary becomes sphere
S2 attached to E4. The resulting space would be nothing but CP2. Thus CP2 and M4 are
very closely related.

One can of course argue that Euclidian signature means that hyper-quaternions are replaced by
quaternions. It is indeed known that CP2 allows quaternion Kähler structure [36] which is weaker
structure than Hyper Kähler structure. Even in Kähler metric making CP2 symmetric space
the components of Weyl tensor obey quaternionic multiplication table but only one component
of the Weyl tensor is covariantly constant. In fact, the breaking of the quaternion structure to
a unique complex structure is what extends holonomy group from SU(2) forced by the Hyper
Kähler structure to U(2) and brings in the missing U(1) factor of the electro-weak gauge group.
The result would mean that M4 × CP2 can be regarded as product of hyper-quaternionic and
quaternion Kähler manifolds.

The key question is whether M4×CP2 could be regarded as hyper-octonionic manifold in some
sense. It is highly improbable that the topology of M4×CP2 would allow HO-analytic coordinate
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maps between different coordinate patches since complex analytic coordinate maps allow much
more structure than HO-analytic coordinate maps. The basic 8-dimensional hyper-octonionic
spaces are just HO and the corresponding projective space PHO and variants of this space.

2.6 Light-like causal determinants, number theoretic light-likeness, and
generalization of residue calculus

The poles and cuts of complex functions correspond in hyper-quaternionic resp. octonionic frame-
work to 3- resp. 7-dimensional surfaces at which hyper-quaternionic resp. hyper-octonionic variable
is light-like. This raises obvious questions. How the number-theoretic light-likeness in HO relates
to the metric light-likeness in M4×CP2? Does the residue calculus generalize to the hyper analytic
context and provide a generalization of the basic formulas of conformal field theory?

2.6.1 Is there a relationship between metric light-likeness and hyper-quaternionic
light-likeness?

In the case of HQ = M4 and HO = M8 the metric light-cones correspond to the light-likeness of
the hyper counterpart h of Minkowski coordinate. For HQ- and HO-analytic functions the image
of point h is given by h = ah0+bOh(h), where Oh corresponds to a local G2 ⊂ SO(7) rotation, and
a and b are SO(7) invariants. Light-likeness condition reads as a2h2

0 − b2|h|2 = 0. The question
is whether this condition could correspond to the metric light-likeness in the metric induced from
Minkowski metric. For the map w = h2 the light-likeness corresponds to that for h and thus to
light-cone as is easy to see. By the multiplicative property of the number theoretical norm this is
the case also for hn and for any real-analytic power series which vanishes at h = 0. Thus HQ and
HO hyper-analytic map seem to respect causality in a well-defined sense.

This and the central role of 3-D and 7-D light like causal determinants in the formulation of
quantum TGD inspire some questions.

1. Could the number theoretic light-likeness in HQ and HO quite generally correspond to
metric light-likeness in the induced metric.

2. Could the metric light-likeness of 3-D causal determinants X3
l ⊂ X4 ⊂ M4 × CP2 in the

induced metric be equivalent with the light-likeness with respect to the metric induced from
OH. This would be a natural condition on the correspondence between HO and M4 ×CP2

representations of the X4.

3. Is the hyper-quaternionic counterpart of Kähler structure possible. In other words, does
the metric of space-time surface induced from HO possess only non-diagonal components in
hyper-quaternionic coordinates? If this were the case, hyper-quaternion analytic transforma-
tions of X4 ⊂ HO would induce an analog of conformal scaling of the metric determinant,
and could be interpreted as active transformations of space-time surface modifying its shape.
Metric determinant of HQ Hermitian metric would transformed by the hyper-quaternionic
norm of df/dh to the product of its all conjugates. Thus these map would preserve the
character of light-like causal determinants with

√
g = 0.

2.6.2 Singularities of hyper analytic maps

In ordinary complex analysis the singularities of analytic maps are important. The map z → w =√
z is the basic example. It creates two-fold covering of complex plane having singularity at origin.

The hyper-elliptic Riemann surfaces in C2 provide a more interesting example: in this case double
covering of D2 is in question except in points which correspond to degenerate roots of second
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degree polynomial. The singularities of hyper-quaternion analytic maps h → f(h) are expected to
correspond to the light-likeness of df/dh.

Hyper-quaternionic 4-surfaces of HO with coordinate H = h1+e3h2 are represented as solutions
of system of form Fi(h1 + e3h2) = 0, i = 1, ..., 4. This gives h2 = f(h1) and h2. One might
hope that f is hyper-quaternion analytic function with real Laurent coefficients. This function
is in general multi-valued and when some roots co-inside df/dh1 = 0 holds true. By df/dh1 =
−(dF/dh1)/(dF/dh2) this corresponds to the vanishing of either dF/dh1 or dF/dh2 and to discrete
points of the space-time surface. Something singular would happens also at the 3-D surfaces at
which dF/dh1 or dF/dh2 is light-like.

2.6.3 Does the hyper variant of the residue calculus exist?

Residue calculus is in a key role in the complex analysis and thus in the formulation of con-
formal field theories. One might wonder whether its generalization to (hyper-)quaternionic and
(-)octonionic case might exist and be useful in quantum TGD context. The fact that hyper-
quaternion/-octonion analytic functions with real Laurent coefficients are linear in the imaginary
part h of the argument implies effective commutativity and associativity and could make the notion
of integral function and even definite integral well defined.

As a matter fact, the same notion of analyticity results if it is assumed that quaternionic units
annihilate each other as in the induced Abelian algebra obtained by regarding hyper-quaternions
as sub-space of complexified quaternions and projecting normal component from the product.

The physical intuition serves as a guideline in attempts to guess what the generalization of
integrals

∫
f(z)dz over curves of complex plane might mean.

The construction of configuration space geometry and of physical states reduces to the data
given at two-dimensional partonic surfaces, which have co-dimension two as have also the poles of an
analytic function. The hyper-quaternionic counterparts of residue integrals correspond to integrals
over codimension 1 surfaces X3 in X4. Thus it would seem that 3-D light-like causal determinants
are more like cuts than poles. These integrals should reduce to integrals over partonic two-surfaces
X2 defined by the intersections X3 ∩X3

l , perhaps defined by the value of the integrand at these
surfaces serving as end points of integration curve.

A good guess is that admissible integration paths X3 correspond to light-like 3-surfaces X3
l

having interpretation as lines of generalized Feynman diagrams. By taking one integration variable
to be h they would reduce to sum of 2-dimensional integrals over partonic 2-surfaces X2. Hyper-
quaternion analyticity requires that the determinant of the induced metric, which is certainly
non-analytic function, does not appear in the admissible integrands. Hence these integrals could
define conformal (or hyper-conformal) invariants. These kind of invariants would naturally appear
in the definition of S-matrix elements using generalized Feynman diagrams for which by definition
diagrams with loops are equivalent to tree diagrams.

Let us see whether these ideas survive more quantitative inspection. For hyper-quaternionic
function 1/h in HQ = M4 3-dimensional light-cone t2 − x2 − y2 − z2 defines the singularity, and
could be also seen as the analog of a cut rather than pole of an analytic function. For HO = M8

7-dimensional light-like cone takes the same role.
The idea can be tested in the case of H2 by calculating the integral

∫
dh/h around closed

curve intersecting light-cone a2 = t2 − z2 = 0 twice. The integral function is log(h), with h =
±

√
(|a2|)exp(e1η) using the hyperbolic analog of polar coordinates. The modulus of h has now

both signs and is discontinuous along the 2-D light-cone boundary. The integral reduces to the sum
of the discontinuities at points where the curve intersects the 1-D light-cone. The discontinuity is
given by log(|a2|/ − |a2|) at the limit a2 → 0, and equals to log(−1), which can be identified as
±iπ. The only natural definition is based on same sign of discontinuity so that the integral over a
closed curve vanishes and one avoids the introduction of the imaginary unit highly un-natural in
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hyper-complex context. Note however that there is no obvious objection against complex extension
of hyper-complex numbers.

In the case of HQ the pole corresponds to t2 − x2 − y2 − z2 = 0 and it is clear that the only
sensible option is the one for which residue integrals over closed curves vanish. This conforms with
the physically motivated definition of residue integrals as kind of conformal or hyper-conformal
invariants assignable to light-like surfaces X3

l having boundaries at light-like 3-surfaces X7 of
H = M4× CP2.

2.7 Induction of the (hyper-)octonionic structure

The induction of (hyper-)octonionic structure corresponds to the projection of (hyper-)octonion
basis to space-time surface. The normal component of the algebra product could be projected out.

2.7.1 Two manners to induce (hyper-)octonionic structure

The induction of the (hyper-)octonion structure to the space-time surface means that (hyper-
)octonionic units Ik = eA

k IA, where IA are (hyper-)octonion units multiplied, are projected to the
space-time surface

Iα = Ik∂αhk . (10)

If the product of tangent space (hyper-)octonions is defined using the original inner product (no
conjugation for

√−1), the inner product gives induced metric

〈IαIβ〉 = gαβ , (11)

This result is nice but the problem is is that the components of the induced (hyper-)octonion field
do not generate 4-dimensional (complexified) sub-algebra since the product contains components
belonging to the normal space of the space-time surface.

The requirement that the product is automatically tangential to the surface, gives stringent
conditions for the space-time surface but is possible to satisfy at least in the case of (hyper-
)quaternionic manifolds since the (hyper-)quaternionic sub-spaces of (hyper-)octonions are labelled
by CP2. The assumption that the tangent space of X4 closes algebraically to (complexified)
quaternions makes sense and would assign to each point of resulting 4-surface a point of CP2.

One can imagine also a second alternative. A four-dimensional algebra property is achieved
quite generally if one redefines the (hyper-)octonion product by projecting away the component
normal to the space-time surface. This projection operation means that one defines the structure
constants of the induced algebra as projections of the structure constants of the octonionic algebra:

IαIβ = d γ
αβ Iγ ,

dαβγ = dklm∂αhk∂βhk∂γhm . (12)

One can also induce the algebra to the normal space of the space-time surface and basic formulas
are very similar to those encountered in the case of the tangent space induction.

2.7.2 Is the induced (hyper)-octonion structure always associative or co-associative?

The basic motivation behind the entire construction is the idea that either the tangent space of the
space-time surface or its normal space could be regarded as an associative algebra. The explicit
form of the tangent space associativity conditions
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Iα(IβIγ) = (IαIβ)Iγ , (13)

reads explicitly as

d µ
αβ d δ

µγ = d µ
βγ d δ

αµ . (14)

In the case of the normal space induction, the conditions are of the similar form. It is convenient
to say that space-time surface is co-associative if its normal space possesses associative induced al-
gebra. The situation for the hyper-octonionic induction is essentially the same since only extension
by
√−1 is involved.
The following arguments suggest that associativity/coassociativity indeed holds true. The idea

is to use general coordinate invariance to reduce the problem at a given point of the space-time
surface to the study of the orthogonal 4+4 decompositions of the standard octonion basis and then
explicitly study the induced algebra for various decompositions.

1. Reduction of the problem to the study of the 4+4 orthogonal decompositions of the standard
octonion basis

Since a manifestly general coordinate invariant tangent space structure is in question, it seems
obvious that it is always possible to find such coordinates that, at a given point of the space-
time surface, the components of the octonionic form of H reduce to the standard form having
standard multiplication rules of the octonionic generators. This is achieved if at a given point of
X4 one can choose orthonormal coordinates in H such that four coordinate curves are orthogonal
to space-time surface and four are parallel to it. The second half of the H-coordinates serves as
orthogonal coordinates for the space-time surface. Under these assumptions the algebra of the
octonionic components Ik at the point of X4 is of the standard form and one must only study
different 4+4 decompositions of the octonion basis to orthogonal 4-dimensional subspaces to find
whether associativity or co-associativity holds true.

In the standard basis, the induction procedure means that one drops away orthogonal compo-
nents from the product of two octonion units belonging to the tangent space of X4. Similarly in the
case of normal space induction. This means that one can readily look what kind of 4-dimensional
algebras are obtained by this procedure and whether they are associative or co-associative.

2. Various 4+4 orthogonal decompositions of the octonionic algebra

There are two cases to be considered according to whether I0 belongs to the quadruple or not.
The crucial observation in what follows is that any two imaginary octonion units belong to some
of the seven associative triples.

Case A: I0 belongs to the quadruple

There are two cases to be considered.
i) All three Ik:s belong to same associative triple. In this case, space-time surface has quater-

nionic structure.
ii) If the third Ik does not belong in same triple then all products of Ik lead out from the

tangent space. These products vanish in the induced algebra. Thus Ik annihilate each other in the
induced algebra and their squares are equal to −I0. The defining relations of the 4-dimensional
algebra

I2
k = −I0 , IkIl = 0 , k 6= l . (15)
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This is an associative algebra representable by 4x4 unit matrix and 3 imaginary matrices with one
non-vanishing element i at the diagonal.

There are no other possibilities. These subspaces are associative as expected. The result means
also that the complements of these spaces are automatically co-associative.

Case B: I0 does not belong to the quadruple

There are two possibilities also now.
i) There is full associative triple plus one outsider. All products of the outsider with the triple

vanish as also vanish the squares of each Ik in the induced algebra structure.

IiIj = eijkIk , I2
k = 0 , I4Ik = 0 , I2

4 = 0 . (16)

This algebra is nothing but the algebra generated by the original associative triple endowed with
the 3-dimensional cross product and by the fourth element with vanishing square and annihilating
the elements of the triple. Since cross product is non-associative, also the entire algebra is non-
associative.

ii) There is no full associative triple. In this case all products lead out of the system and each
algebra generator annihilates itself and others in the induced algebra.

IjIk = 0 for all j and k . (17)

This algebra is obviously associative. The matrix realization is obtained by taking the four diagonal
elements of 4x4 matrix and by replacing them by a nilponent 2x2 matrix.

To conclude, if the assumptions about reducibility of the octonion basis to the standard form
are correct, then M4

+ and CP2 as a sub-manifolds of M4 × CP2 are both associative and co-
associative. Same holds also true for the local fiber-base decomposition of SU(3) regarded as a U(2)
bundle over CP2. An example of a non-associative space-time surface is provided by the surface
E3 × S1, where E3 is space-like hyperplane of M4 and S1 is geodesic circle of CP2. It seems that
non-associative space-time surfaces are not physically interesting in TGD context. One can also
consider the induced quaternion structure at 2-dimensional surfaces of a 4-dimensional manifold.
The local algebra associated with a given 2-surface is either the algebra of the complex numbers
or the algebra generated by two nilpotent elements annihilating each other. For 3-dimensional
sub-manifolds one obtains the non-associative algebra defined by the ordinary cross product.

3 (Co-)-Hyper-quaternionicity in HO ↔ space-time as 4-
surface in M 4 × CP2

This section summarizes the basic vision about number theoretic realization of classical dynamics
boiling down to the assumption that space-time surfaces can be regarded as hyper-quaternionic
or co-hyper-quaternionic sub-manifolds of hyper-quaternionic M8 = HO. This identification is
equivalent with the assumption that space-time surfaces are 4-D surfaces in M4 × CP2 so that
number-theoretic variant of spontaneous compactification occurs.

3.1 Why hyper-quaternions and -octonions?

Several observations support the view that hyper-quaternions and hyper-octonions are natural
from the point of view of TGD.
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1. M4, M4
+ and its complement in M4, and the intersection M4

+ ∩ M4
− of future and past

light-cones with different tips can be regarded as 1-dimensional hyper-quaternionic spaces
or their projective variants. The new element is that light-cone boundary δM4

+ takes the
role of origin as a projectively invariant set. The existence of light-like numbers basically
reflects the failure of number field property of complexified quaternions. If M4

+∩M4
− is given

a metric with Euclidian signature and identifying the points at the boundary with light-like
separation are identified, a set having boundary S2 is obtained. By gluing to it S2 CP2

results.

2. The generalized symplectic structure of H = M4 × CP2 seems to be intimately involved
and generating hyper-quaternion units have representation in terms of covariantly constant
antisymmetric forms of M4 defining ”hyper-hyper-Kähler” structure in M4.

3. U(2) Lie-algebra with central extension term can be identified as HQ. The reason is that
SU(2) Lie-algebra commutator differs by a factor of

√−1 from quaternionic commutator.
Thus U(2) has naturally metric with Minkowskian signature.

4. An encouraging hint is the fact that Hamilton-Jacobi coordinates involving two light-like
coordinates and complex coordinate and its conjugate are associated naturally with both
hyper-quaternionic structure and with the construction of general solutions of field equations
[D1].

3.2 How to understand M4 × CP2 in the hyper-octonionic context

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to
ask whether four-surfaces X4 in HO could under some conditions define 4-surfaces in M4 × CP2

indirectly so that the spontaneous compactification of super string models would correspond in
TGD to two different manners to interpret the space-time surface. The following arguments suggest
that this is indeed the case.

3.2.1 Hyper-octonions and SU(3)

The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identified
as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as SU(3)
Lie algebra. Rather, octonions decompose as 1 ⊕ 1 ⊕ 3 ⊕ 3 to the irreducible representations of
SU(3).

Allowing complexified octonions, a given octonion defines states in 3 and 3. The pairing 3⊗ 3
yields a state in color octet representation and thus an element of SU(3) Lie algebra. This pairing
corresponds to the possibility to define an algebra structure combining 3, 3, and SU(3) Lie-algebra
to single larger algebra. The algebra product is given by

[
TA, TB

]
= fAB

C TC ,

TA ◦ qi = DA
ij qj , TAqi = D

A

ij qj ,
qi ◦ qj = CijATA qi ◦ qj = qi ◦ qj = 0

(18)

CijA denote Glebsch-Gordan coefficients.
The ”super” Jacobi identities expressing the condition

TA(qi ◦ qj) = (TAqi) ◦ qj + qi ◦ TA(qj) (19)

are expected to hold true.
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3.2.2 CP2 labels hyper-quaternionic sub-spaces of hyper-octonions for a fixed com-
plex structure

The quaternionic sub-algebras of octonions with fixed complex structure are parameterized by
CP2 just as the complex planes of quaternion space are parameterized by CP1. Same applies to
hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

If the preferred octonionic imaginary unit multiplied by
√−1 must correspond to an anti-

symmetric tensor of H = M4 × CP2, whose square equals to the metric of H. This tensor is
sum of CP2 part given by CP2 Kähler form and M4 part, which is self dual form having in the
standard light-cone coordinates (u = t − z, v = t + z, x, y) the representation Juv = −Jvu = 1,
Jxy = −Jyx =

√−1. Therefore the ansatz is also consistent with vacuum extremals for which
the induced Kähler form vanishes. The selection of the preferred complex structure would be a
correlate for the spontaneous symmetry breaking associated with spontaneous compactification in
string models.

Assigning to a point of X4 a quaternionic sub-algebra with a fixed complex structure means
assigning to it a point of CP2. First of all, the choices of a fixed quaternionic basis 1, e1, e2, e3

with a fixed complex structure (choice of e1) are labelled by U(2) ⊂ SU(3). The reason is that
the choice of e2 and e3 amounts to fixing e2 ±

√−1e3, which means that one selects the U(2)
subgroup of SU(3), or decides what linear superposition of quarks/antiquarks one calls strange
quark/antiquark having vanishing isospin. The selection of what quark is regarded as strange
quark is invariant under the action of U(2). Hence all possible additions of e2, e3 to 1, e1 are
labelled by SU(3)/U(2) = CP2.

3.3 (Co)-hyper-quaternionic 4-surfaces in HO correspond to space-time
surfaces in M4 × CP2

The observations about the role of SU(3) and CP2 imply that HQ and coHQ 4-surfaces in HO
correspond in one-one manner to 4-surfaces in M4 × CP2 and to a general ansatz producing this
kind of surfaces.

3.3.1 A map HO → SU(3) defining an integrable distribution of hyper-quaternionic
planes defines a foliation of M4 × CP2 by 4-surfaces

A distribution of HQ (coHQ) planes in HO defines its foliation by 4-surfaces X4 of HO and
therefore also that of M4 × CP2 if integrability conditions, which state that HQ (coHQ) planes
define tangent planes of X4 in the foliation, are satisfied. The M4 coordinates of X4 are obtained
as the projection of HO to a fixed HQ sub-space of HO whereas the selection of the quaternionic
plane defines CP2 coordinates.

Since coHQ case is very similar to HQ case, only HQ case will be discussed explicitly. The
hyper-quaternionicity condition states that it is possible to select at each point of HO local U(2)
sub-algebra of SU(3). The local algebra is obtained by adjoint action from the standard U(2)
algebra at the unit element of SU(3):

Tm
h = Adg(h)(Tm) = g(h)Tmg−1(h) ,

[Tm
h , Tn

h ] = fmn
rT

r
h (20)

If the distribution of the hyper-quaternionic tangent planes in HO defined by a map g : HO →
SU(3) is integrable, a foliation of HO by four-surfaces results, and defines a foliation of H =
M4 × CP2 so that a 4-parameter family of solutions is obtained. This could perhaps interpreted
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as stating that the allowed maps g : HO → SU(3) are consistent with the bundle structure
π : SU(3) → CP2 in the sense that g induces a bundle structure HO → g−1(CP2). Now however
the projection of X4 to a given fiber need not be a point but can be even four-dimensional surface
as in the case of the canonical imbedding of M4 to H.

3.3.2 A generalization of the solution ansatz to take into account vacuum degeneracy

Vacuum degeneracy is a characteristic feature of Kähler action and implies the presence of infinite
number of non-quantum fluctuating zero modes, which do not contribute to the metric of the
configuration space. Also the solution ansatz should have analogous degeneracy. This suggests
that the solution ansatz assuming that the preferred imaginary unit is same in entire HO is
too restricted and should be made local. This means local S6 = G2/SU(3) labelling different
orientations of the imaginary unit.

Thus the degeneracy due to the possible local choices of the hyper-octonionic complexification
corresponding physically to the choice of the plane of non-physical polarizations, becomes a candi-
date for this degeneracy and would expand the group of local symmetries from SU(3) constrained
by the integrability conditions to the entire automorphism group G2 of octonions. The local fixing
of complexification in HO means the fixing of a map f : OH → S6. Probably this map could
satisfy some constraints forced by the absolute minimization. If the choice of f is completely free,
the integrability conditions would be invariant under G2 ⊂ SO(7) automorphisms. The maps
f : HO → S6 and g : HO → SU(3) could be interpreted as a map h : HO → G2 in the local
trivialization G2 = S6 × SU(3).

3.3.3 Also coHQ 4-surfaces are needed

It seems that also the dual solutions for which the normal space is hyper-quaternionic must be
allowed since otherwise it is not possible to understand CP2 type extremals, which are definitely
quaternionic objects. The four parameters labelling the solutions become space-time coordinates
for the dual solution whereas the space-time coordinates for the solution parameterize dual solu-
tions.

The surfaces at which the induced metric becomes light-like might allow to glue together
solutions corresponding to different functions g and f . The intuitive expectation is that the
light-likeness for 3-D surfaces should correspond to the number-theoretic light-likeness of a hyper-
quaternionic space-time coordinate. If the hyper-quaternionic functions are rational functions, 3-D
light-like causal determinants can appear as a generalization of the poles of a rational function.

3.3.4 Why not octonion analyticity instead of hyper-octonion analyticity?

Mind must be kept open also for the octonionic variant of the solution ansatz might make sense.
HO = M8 can be replaced with O = E8, space-time surfaces as hyper-quaternionic sub-manifolds
can be replaced with quaternionic sub-manifolds, and the map M8 → M4 × CP2 can be replaced
with a map E8 → M4 × CP2.

The map O → M4 is defined as the canonical projection to Q followed by the multiplication of
quaternionic imaginary units with

√−1. Hence the possibility that octonionic ansatz might make
sense must be left open.

The differences between the two solution ansätze become obvious when the hypothesis that
infinite hyper-octonionic primes are representable in terms of hyper-octonionic polynomials is dis-
cussed in the chapter [E3]. As found, these notions of primeness differ in a profound manner,
and the fact that hyper-octonionic primes allow an interpretation as Minkowskian 8-momenta
encourages to think that they define the correct option.
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3.4 Integrability conditions

If the distribution of hyper-quaternionic planes are identifiable as tangent planes of space-time
surface X4 ⊂ HO, commuting tangent vector fields ∂α associated with X4 coordinate variables
xα exist. Integrability conditions express the commutativity of these vector fields lifted to HO
vector fields. Note a that X4 ⊂ H = M4 × CP2 imbedding exists by definition, and it is only the
integrability to a 4-surface in HO, which requires additional conditions, hoped to be equivalent
with field equations, to be satisfied.

3.4.1 Induction of SU(3) Lie algebra vector fields to HO and tangent plane

SU(3) Lie-algebra generators TA define vector fields in SU(3). The dual forms ωA can be induced
to HO and either HO = M8 Minkowski metric mij can be used to lift them to vector fields of
HO by the index raising operation

T̂Ai∂i = mijωAk∂jg
k∂i . (21)

The forms ωA induced to HO can in turn be induced to forms in the local hyper-quaternionic
tangent plane and the metric of the tangent plane allow to transform these forms to vector fields
in X4. The natural tangent plane metric is the metric gαβ induced from the metric of HO. This
metric could in turn be induced from that of H = M4 × CP2. Also the the Kähler form of CP2

could be induced to HO and could perhaps serve as representation for e1.
The integrability conditions in HO should be equivalent with the field equations defined by

Kähler action and in these equations the induced metric and Kähler form of H appear.

3.4.2 The analogy of integrability conditions with those for a flat connection

Integrability implies that X4 has tangent vector field basis ∂α in HO. It is possible to express
tangent vector fields ∂αhk as linear combinations of HO vector fields T̂m defined the local U(2)
Lie-algebra generators Tm

h , where the subscript h tells that the U(2) subalgebra depends on HO
coordinate h and is obtained by the adjoint action:

∂α = AαmT̂m
h .

The interpretation of A as an analog of U(2) gauge potentials suggests itself. The difference is
that T̂m does not represent SU(3) vector field but induced HO vector field.

The integrability conditions express the commutativity condition [∂α, ∂β ] = 0. If T̂m
h would

represent SU(3) vector field, the integrability conditions would translate to the flatness of U(2)
connection:

dF = dA + [A,A] = 0 . (22)

In the recent case the conditions have a more complex but analogous form:

[
Aαm(T̂m

h ◦Aβn)−Aβm(T̂m
h ◦Aαn)

]
T̂n

h + AαmAβn

[
T̂m

h , T̂m
h

]
= 0 . (23)

The generators T̂m defining U(2) basis differ by a local SU(3) gauge transformation and by the
effects caused by induction from the standard basis. An analog of with flat U(2) connection is
obvious. This brings in mind the structure of CP2 as coset space: also in this case U(2) acts as a
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local gauge group and permutes points inside U(2) cosets. Now these cosets wold be replaced by
cosets of local SU(3).

To gain a better understanding of what is involved it is good to clarify what are the basic
bundle structures involved.

1. SU(3) → CP2 defines a U(2) bundle and is essential for H picture.

2. The tangent bundle T (G) → G = SU(3) and corresponding cotangent bundle T ∗(G) are
essential for HO picture and appear in the integrability conditions. T (G) → G = SU(3) bun-
dle structure is induced to give bundle with base space HO by mapping it first to cotangent
bundle by assigning to vector fields their duals, inducing the cotangent bundle by standard
procedure, and lifting it back to (possibly sub-) vector bundle of the tangent bundle of HO.
The induction procedure for vector fields is what brings in dynamics involving the metric
induced from H.

3. U(2) is identified as a sub-manifold of the base G at given point of CP2, and U(2) tan-
gent space vector fields are induced to vector fields in local hyper-quaternionic spaces and
integrability conditions imply that these vector fields define tangent space basis in X4.

3.5 How to solve the integrability conditions?

In the following some attempts to understand integrability conditions are made. After more or
less ad hoc attempts an ansatz based on hyper-octonion analyticity is proposed.

3.5.1 Guesses for the solution of integrability conditions

A trivial vacuum solution with constant CP2 coordinates results if the local trivialization SU(3) =
U(2)×CP2 is induced to HO by the map g and space-time surfaces correspond to inverse images of
U(2). Hyper-quaternionic sub-space is same at each point of X4 now. Any invertible map g defines
trivial vacuum solutions in this manner. Obviously, non-trivial solutions cannot be consistent with
the local foliation SU(3) = U(2)× CP2.

One might wishfully think that the expression for a flat connection generalizes and defines a
solution of the integrability conditions also now. This would boil down to the replacement

Aα = h−1∂αh = (h−1∂αh)mTmh → (h−1∂αh)mT̂m . (24)

h should be U(2) valued map X4 → U(2) for each sheaf of the foliation and would define U(2)
coordinate for X4.

A second possibility popping in mind is that the induced vector fields in X4 define the original
U(2) Lie-algebra for the solutions of the integrability conditions apart from the scaling of Lie-
algebra generators, and thus of structure constants, by functions of U(2) invariants. This would
mean that the effect of the adjoint action and index raising operation with HO metric preserves
U(2). In this case A would define a genuine U(2) connection and integrability conditions would
state its flatness.

3.5.2 Do hyper-octonion analytic maps HO → HO define solutions to the integrability
conditions?

HO picture raises two challenges. First of all, a general solution to the integrability conditions
should be found. Second task is to demonstrate that field equations determined by Kähler action
are under some additional conditions equivalent with the solution.
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1. The general hyper-octonion analytic ansatz

Hyper-octonion analytic maps with real coefficients from OH to itself suggests themselves as
candidates for this kind of maps. The key observation is that it is possible to assign to a map
HO → HO a map HO → SU(3). HO tangent space has 1⊕ 1⊕ 3⊕ 3 decomposition so that the
tensor product of 3⊗ 3 gives a color octet vector field identifiable as an element of local SU(3) Lie
algebra. The exponentiation of this vector field defines an element of local SU(3) defining in HO
a distribution of hyper-quaternionic tangent planes.

If hyper-octonion analyticity guarantees integrability conditions, a foliation of HO by 4-surfaces
X4 and hence of H = M4 × CP2 results. There is a definite analogy with spontaneous compacti-
fication in that TGD in flat 8-D non-compact space HO would be equivalent TGD in M4 ×CP2.

What might be called simple hyper-quaternion analytic maps with real Laurent coefficients,
are of form

h0 + h → a(h)h0 + b(h)h

as is easy to find by looking what happens in the map h → h2 and by generalizing using induction.
Also more general maps defined as composites of a local G2 automorphisms f̂(h) performed for

the imaginary part of h and followed by a a simple hyper-octonion analytic map are possible and
give rise to the result

h0 + h → h0 + f̂h(h) → a(h0, |h|2)h0 + b(h0, |h|2)f̂h(h) . (25)

This means that the simple hyper-octonionic map ĝ is is replaced with the composite ĝ ◦ f̂ . f̂ is
HO-local G2 ⊂ SO(7) rotation, and defines an element of f(h) of S6 assuming that the imaginary
part is thought of as being obtained from some fixed imaginary unit by G2 element.

Obviously, the HO analytic maps involving local G2 automorphism represent a generalization
of anti-analytic maps. In HQ analytic case the corresponding degree of freedom corresponds to a
local SO(3) rotation.

In the case that the f̂h depends only on the direction of h,

f̂h = f̂(
h

|h| ) , (26)

f̂ commutes with ĝ:

ĝ ◦ f̂ = f̂ ◦ ĝ . (27)

Under this condition the map HO → S6 reduces to a map S6 → S6. Physically the commutativity
conditions is highly attractive as a symmetry giving hopes about consistency with field equations.

The solution ansatz defines an element of local automorphism group G2 in the local trivialization
G2 = S6 × SU(3). The imaginary part of the hyper-octonion forms a 7-D representation of G2

and 7⊗ 7 tensor product defines an element of the Lie-algebra of G2 and hence the tensor product
defines a map to local G2. The obvious question is whether the two elements of G2 defined in this
manner are identical.

The solution ansatz involves two U(2) algebras. The first one corresponds to the hyper-
quaternionic tangent space and for this representation hyper charge generators is represented by
unit matrix. This algebra is very much analogous to electro-weak U(2). Second representation of
U(2) algebra results from 2 × 2 tensor product. It would not be too surprising if these algebras
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could be mapped to each other in the sense that octonionic products for 2 + 2 would give the
hyper-quaternionic U(2).

2. Is the reduction to Lie-algebra level possible?

The SU(3) generator given by the tensor product 3× 3 is of form

X = b2(h)ĥi
3ĥ

j

3
CijATA ,

ĥ = f̂h(h) . (28)

The Lie-algebra element at a given point of HO differs only by the scaling factor b2(h) for
different maps when the choice of imaginary unit is kept fixed. Therefore, at a given point of HO
the values of g(h) for various hyper-quaternion analytic maps belong to the same one-parameter
sub-group U(1)h determined by X(h).

This reduction and the fact that g is otherwise arbitrary and can be arbitrary near to identity
map raises the hope that it is enough to consider the conditions infinitesimally so that Ad(g)− 1
reduces infinitesimally to a commutator in Lie algebra. If this is the case, the conditions are
satisfied if X is annihilated by the adjoint action of the U(2) generators Tm and would thus define
an U(2) invariant vector field in X4. Taking into account the universal nature of X this not be
surprising. Since b2 is U(2) invariant function so that the remaining universal vector field should
be invariant under local U(2) and analogous to the SU(3) invariant vector fields in CP2.

3. Does hyper-quaternion analyticity make sense?

A wishful thinker, inspired by the idea about strings → TGD transition as H2 −−R → HO−
−HQ transition, might hope that also hyper-quaternion analyticity makes sense. HO allows the
decomposition HO = HQ +

√−1e3Q with coordinate h +
√−1e3q. Assume that X4 allows

HQ manifold structure and let x be HQ coordinate for X4 (this is quite strong an assumption).
Continuing in wishful spirit, h = f(x) could be HQ analytic function whereas q could be obtained
from HQ analytic function g(x) by multiplying its real part with

√−1. HQ analyticity would mean
that the function would be of general form x0+

√−1x → a(x0, |x|2)x0+b(x0, |x|2)
√−1O(x)x. Here

O(x) is a local SO(3) rotation.

3.6 HO−H duality and the variational principle behind HO dynamics?

HO −H duality suggests that HO dynamics is derivable from a variational principle. There are
some arguments suggesting that HO−H duality could be regarded as a kind of color–electro-weak
duality. This duality is also supported by the basic facts about 8-dimensional vector and spinor
representations of SO(7, 1). A reasonable candidate for the variational principle is as a Dirac
action for 8-D hyper-octonionic spinor fields in 8-D hyper-octonion space.

3.6.1 HO −H duality as color-electro-weak duality?

One can wonder whether the imbedding defines naturally classical electro-weak and color gauge
potentials at the space-time surface. One can also wonder how the two dual pictures corresponding
to HO and M4 × CP2 relate to this.

1. The projections of the duals of SU(3) Lie algebra generators lifted to vector fields at the space-
time surface would be natural candidates for classical color gauge fields. If the U(2) algebra
is preserved in the induction procedure, the integrability conditions imply the vanishing of a
genuine U(2) gauge field. A natural interpretation would be as an electro-weak gauge field.
Electro-weak gauge fields would not appear in HO picture.
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2. In H picture electro-weak gauge potentials can be induced from the spinor connection of
M4×CP2. The projections of Killing vector fields of SU(3) in CP2 define analogs of gluons
but since they do not appear in the modified Dirac equation for induced spinors nor in the
Dirac equation for imbedding space, one might argue that genuine gluon fields are not in
question.

These observations give some hints about the concrete physical interpretation of HO − H
duality. For HO representation of the space-time surface classical color gauge fields are naturally
present whereas for H representation this is the case only for electro-weak gauge fields. A vague
hunch about this kind of duality has been present in TGD framework from beginning. For instance,
induced spinor fields do not carry color as a spin like quantum number whereas color triplet and
antitriplet occur naturally in HO representation and could multiply the solutions of the modified
Dirac equation in HO.

If this duality makes sense, H picture could correspond to the description of hadron physics
using hadrons as basic particles and using the current algebra defined by the electro-weak currents.
HO picture would correspond to QCD approach based on the use of color currents. Color con-
finement might be seen as an impossibility to detect color in the experiments based on M4 ×CP2

description.
There is an obvious objection against this picture. HO spinor fields lack completely spin and

ew spin indices. On the other hand, H spinors lack color as spin index. In H picture, classical
color charges are however well-defined and color emerges at configuration space level as a kind of
orbital degree of freedom. This leads to the idea that in HO description using the dual CHO
of configuration space CH, spin and ew spin correspond to configuration space orbital degrees of
freedom and color to spin like quantum numbers. HO−H duality would permute orbital and spin
degrees of freedom for configuration space spinor fields. This idea, to be be developed in more
detail later, leads to quite nice understanding of dualities of hadron physics.

One can ask how the H − HO duality relates to the duality between the proposed dual de-
scriptions using partonic 2-surfaces and interiors of corresponding 3-surfaces (7-3 duality). Super-
canonical conformal weights expressible in terms of zeros of zeta are associated with partonic
2-surfaces and zeros of ζ seem to be dual to primes much like momentum is dual to position.

3.6.2 The variational principle behind HO dynamics?

A genuine dynamics in HO degrees of freedom suggested by HO −H duality could help in fixing
the details of the scenario. There are several hints as regards to the nature of the HO dynamics.

1. The variational principle for the maps HO → HO dynamics should be something very simple
since hyper-octonion analytic maps with a local G2 invariance should provide solutions of
field equations.

2. 1 + 1 + 3 + 3 decomposition of octonions suggest that the variational principle could be
something which might be regarded massless Dirac action for a spinor field of HO as hyper-
octonionic argument and itself having interpretation as octonion. The interpretation of the
spinor components would be as analogs of leptons and quarks which do not however carry
spin and electro-weak spin but only color. Color octet field, analogous to a gluon field, could
be constructed as a bi-linear of 3 + 3 part of this field. This picture would conform with
color-electro-weak duality.

1. Spinors as octonions

The idea is that (hyper-)octonion analytic function can in some sense be regarded as 8-
component spinor field with the units of octonion representing components of the spinor field.
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The problem is that octonionic gamma matrices are necessary 2 × 2-dimensional in octonionic
sense so that 2-D octonionic spinors would be required.

The difficulty can be circumvented by the replacement of the massless Dirac equation by the
equation obtained by multiplying it with γ0. This means that gamma matrices are replaced with
α matrices α0 = 1 and αi = γ0γi. In fact, Dirac treated Dirac equation just in this manner and
interpreted α matrices as components of four-velocity operator. The space-like alpha matrices
satisfy the anti-commutation relations

{αi, αj} = −2mij . (29)

The breaking of the manifest Lorentz invariance is natural in the number theoretic context where
SO(1, 7) reduces to G2.

The motivation for this trick is that α matrices allow a representation as quaternionic/octonioni
units: αk = ek. In the case of octonions the representation is of course not matrix representation so
that spinors in the usual sense cannot be defined. The idea is that the components of spinor basis
at a fixed point are identifiable as alpha matrices so that spinor fields are identifiable as octonion
valued functions of octonion variable. The interpretation as a super-symmetry is obviously possible.

The counterpart of the massless Dirac equation reads in the octonionic case as

(∂t + αi∂i)Ψ = 0 . (30)

The solution is obtained by generalizing the usual solution ansatz

Ψ = (∂t − αi∂i)Ψ0 , (31)

where Ψ0 is octonion analytic function with real Laurent coefficients interpreted as spinor. Dirac
equation reduces to Laplace equation for Ψ0:

(∂2
t +∇2)Ψ0 = 0 . (32)

This equation is satisfied separately by each component of Ψ0 as direct check of the Laplace
equation for the few lowest powers of the octonion variable demonstrates. The result, which is a
direct generalization of the corresponding result of complex analysis, must reduce to the Cauchy
Riemann equations satisfied by real-analytic octonion power series. Hence the vague idea about
octonion analyticity as a counterpart of ordinary analyticity is beautifully realized.

In the case of hyper-quaternions and -octonions the introduction of
√−1 is necessary but only

changes Laplace equation to massless d’Alembert equation. In both cases the octonion conformal
flatness of the space meaning that metric is apart from a conformal factor proportional to the flat
space matric is absolutely essential for the ansatz to work since otherwise the Hermitian metric
does not disappear from the Laplace equation

∂α

[
g1/8gαβ∂β

]
Ψ0 = 0 .

Note that octonionic spinor must be defined as 1/4-density in order to achieve the elimination of
the metric.

This Dirac equation can be deduced from a variational principle. The point is that γ0 appearing
in the definition of Ψ̄ multiplies gamma matrices to give α matrices and thus disappears from the
action.
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2. Generalization of the solution ansatz to 2-component octonionic spinors

The solution ansatz generalizes also to the octonionic representation of gamma matrices. The
minimal octonionic representation of gamma matrices requires two-component octonionic spinors
with the minimal octonionic representation of gamma matrices being be defined as

γ0 =
(

1 0
0 −1

)
, γi =

(
0 ei

−ei 0

)
, i = 1, ..., 7 . (33)

In this case the solution ansatz is of form Ψ = γk∂kΨ0, where the components of Ψ0 are real-
analytic functions of octonion argument. The solution involves two real-analytic functions of
octonion variable. It seems however possible to pose a generalized Weyl condition

PΨ0 = 0 , P = 1
2

(
1 ε
ε 1

)
, ε = ±1 . (34)

Not surprisingly, 2-dimensional Weyl condition allows to eliminate the second spinor chirality
and it is therefore possible to formulate hyper-octonion analyticity using ordinary Dirac equation.
Conserved quark and lepton chiralities for H spinors are counterparts for the two chiralities now.

The interpretation of (hyper-)quaternionicity condition in this framework is that induced
gamma matrices generate (complexified) quaternionic algebra and thus allow a matrix representa-
tion obtained by representing quaternion units by complex 2× 2 matrices.

3. How to guarantee local G2 invariance?

The dynamics should allow local G2 invariance possibly restricted by the commutativity con-
dition. The local G2 rotation of the imaginary units does not commute with the derivatives and
it seems that the introduction of G2 gauge potential acting on HO spinors cannot be avoided.
The introduction of a genuine gauge field does not look an attractive idea. Fortunately, the gauge
potential could be pure gauge and obtained by exponentiating the G2 Lie-algebra valued field
obtained as a bilinear of 7⊗ 7 tensor product of imaginary parts of octonionic spinor fields. Thus
there would be nice internal consistency.

4. SO(1, 7) structure contra G2 structure

One might ask whether the spinors, conjugate spinors, and their octonionic argument could
correspond to the real spinor representation 8s, its conjugate 8s, and vector representation 8v of
SO(1, 7) so that the tensor product of imaginary parts of spinor and its conjugate would give the
G2 group element defining the gauge potential.

This interpretation requires a matrix representation of Clifford algebra to realize SO(1, 7). For
octonionic representations SO(1, 7) does not however act as the group leaving the octonion norm
invariant. In particular, the octonionic counterparts of sigma matrices are not matrices anymore
and do not generate SO(1, 7) algebra. SO(1, 7) is replaced by G2 and color group appears naturally
too in accordance with the notion of color–electro-weak duality.

The octonionic counterpart of SO(1, 7) Lie-algebra makes however sense [39]. The infinitesimal
transformations leaving the octonion norm invariant correspond to infinitesimal, purely imaginary
octonionic scalings o → (1+ εa)o, where a is a purely imaginary octonion. This is easy to see using
the multiplicativity of the octonion norm. By the non-associativity of octonions, Jacobi identities
for this 7-dimensional algebra are not satisfied so that it is not a Lie-algebra but what is known
as Malcev Algebra. The local gauge pseudo-group would correspond to local purely imaginary
octonionic scalings. Unfortunately, these transformations lead out from hyper-octonionic sub-
space so that they do not seem to have application to the recent case.

37



5. Induced HO spinors at space-time surface

Whether space-time surfaces understood as surfaces of H might allow quaternionic or hyper-
quaternionic structure or perhaps an Abelian variant of this kind of structure obtained by assuming
that hyper-quaternion and -octonion units are commutative, and whether also modified Dirac
equation could allow solutions expressible as generalized analytic functions, has been a subject of
long lasting optimistic speculations. The conceptual difficulties have been related to the lack of the
understanding of the Hermiticity concept and to the problems caused by the non-commutativity.
If HO −−H duality makes sense these speculations find a natural context in HO picture.

If the metric of X4 induced from HO is hyper-quaternionic, which means that it is hyper-
conformally equivalent with flat Minkowski resp. Euclidian metric for 4-surfaces resp. their duals,
massless Dirac equation for the induced HO spinors identifiable as (hyper-)quaternions in the
local (hyper-)quaternionic sub-space makes sense. Induced gamma matrices can be regarded as
projections of the HO octonion basis. The solutions of the Dirac equation are given by hyper-
quaternion analytic power series with real coefficients. These spinors represent hyper-quaternion
analytic maps of space-time surface, and thus leave the interior of space-time intact but deform
its boundaries and thus act as dynamical symmetries and induce corresponding symmetries at the
level of H.

3.7 How extremization of Kähler action could correspond to the hyper-
quaternionicity of 4-surface?

It is natural to close the discussion with an attempt to understand how the proposed speculative
ideas might be realized at quantitative level. The basic questions are following.

1. Is hyper-quaternionicity and its co-property consistent with the extremization of Kähler
action in the proposed sense?

2. Is hyper-octonionic WZW action plus Dirac action for generalized ribbon diagrams dual to
the Kähler action plus modified Dirac action?

There are some general arguments supporting the idea that hyper-quaternionicity resp. its
co-property are consistent with the extremization of Kähler action resp. its dual.

3.7.1 Extrema minimize algebraic complexity

Complexity is minimized for the extremals of any action, and this reduction of complexity could
have an algebraic counterpart. Quite generally, at the extrema of any action the tangent space of
the space of all possible configurations reduces effectively to a point since the first variation of the
action vanishes. The reduction of the complexified octonionic algebra generated by the tangent
space-vectors of the generic space-time surface to a complexified quaternionic sub-algebra could
be an algebraic correlate for this dimensional reduction.

3.7.2 Minimization of Kähler action as minimimization of non-commutativity

Non-commutativity represents complexity and should be minimized for the extrema of the Kähler
action. A measure for the non-commutativity of the tangent space algebra can be defined as
follows. Since the preferred local hyper-octonionic unit e1 is fixed for the allowed variations, the
measure must be constructed from the projections of the tangent space vectors to 3 + 3 sub-space
of the complexified octonionic algebra associated with the hyper-octonionic spinor field.

The commutator for the projections of tangent vector fields to 3 + 3 part of algebra is anti-
symmetric in tangent space indices and defines a generator of color Lie-algebra as
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[e(3)
α , e

(3)
β ] → fA

αβTA . (35)

A natural net measure for non-commutativity would be the quantity

L = fA
αβfαβ

A (36)

integrated over the space-time surface: something very much akin to YM action associated with
classical color gauge fields. When the tangent space algebra reduces to a complexified quaternion
algebra, the non-commutativity is minimized since the contribution from the normal space vanishes.

On the other hand, Kähler action can be identified as color YM action for induced color gauge
potentials defined by the projections of color Killing vector fields. This follows from the fact that
classical color gauge field corresponds to the product JαβHA of Kähler form with the Hamiltonians
of the color algebra, and from the identity HAHA = 1. Thus Kähler action could be interpreted
as a measure for the non-commutativity of the tangent space algebra and would be minimized in
the proposed sense for the hyper-quaternionic 4-surfaces.

The same minimization of complexity occurs also for co-hyper-quaternionic surfaces for which
the commutators of the tangent space vectors belong to the complexified normal space. Hence one
expects that the extremization of Kähler action works quite generally.

3.7.3 Minimimization of non-associativity

(Co-)-hyper-quaternionic sub-manifolds are (co)-associative. This means that the associator of any
three tangent space vector fields vanishes:

Aαβγ = eα(eβeγ)− (eαeβ)eγ = 0 . (37)

The complete antisymmetry of the associator with respect to its indices suggests that associativity
due to hyper-quaternionicity is equivalent with the existence of an identically vanishing topological
current

jα = kεαβγδAβγδ . (38)

The topological current

jα = εαβγδJβγAδ (39)

defined by the Chern-Simons term associated with induced Kähler form is the only candidate for
this current, and indeed plays a key role in the construction of the known extrema of field equations
[D1]. This current vanishes when the dimension D of the CP2 projection of the space-time surface
satisfies D ≤ 2. For D ≤ 2 associativity would hold true and D > 2 would correspond to co-
associativity. Recall that the dimension of CP2 projection plays serves as a classifier for the known
extremals of Kähler action [D1].

4 Is the number theoretic dynamics consistent with the ab-
solute minimization of Kähler action?

In string model hyper-analytic/analytic dynamics is consistent with the minimal surface property.
In TGD framework the question is whether the dynamics defined by the Kähler action is equivalent
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with the dynamics of the hyper-quaternionic ansatz or some other variant of the number theoretical
dynamics.

4.1 The problem

The number theoretic ideas force to ask whether the absolute minimization of Kähler action is
really the fundamental variational principle and whether absolute minimization is necessary at all
as a variational principle. If it is, as the wishful thinker wants to believe, the challenge is to prove
the fundamental role of Kähler action, and to understand how absolute minimization relates to
hyper-quaternionic or co-hyper-quaternionic structure of the space-time surface.

The idea about the reduction of field equations for the absolute minima to essentially algebraic
statements in HO is not completely outlandish idea: the known large variety of solutions of field
equations are indeed satisfied for purely algebraic reasons [D1].

Of course, one must ask how generally the equivalence of number theoretic and Kähler dynamics
is.

1. Could it be that extremals, or absolute minima of Kähler action, or perhaps only max-
ima of Kähler function, correspond to hyper-octonion analytic maps of HO? Or do hyper-
octonion analytic solutions correspond to asymptotic patterns characterized by the vanishing
of Lorentz Kähler 4-force, whereas more general solutions satisfying the integrability condi-
tions would represent non-asymptotic dynamics. Be as it may, the minimum requirement is
that hyper-analyticity is consistent with the conservation laws associated with Kähler action.

2. One can also ask whether the 3-dimensionality of the 3-space has a number theoretic interpre-
tation. Light-like causal determinants X3

l have vanishing metric determinant and this prop-
erty is invariant under HQ analytic transformations which induce local scaling of the metric
determinant. Could it be that only light-like 3-surfaces allow HQ analytic transformations
as symmetries and that these symmetries are equivalent with Kac-Moody super-conformal
symmetries? Could it be that these symmetries corresponds to HQ analytic transformations
of X4 acting as mere coordinate transformations in the interior?

What can one then do?

1. The first things to come in mind is the attempt to show that Kähler action is invariant under
transformations of foliation of M4 × CP2 by 4-surfaces induced by hyper-octonion analytic
maps of HO or transforms by a kind of Weyl scaling factor.

2. One could also wonder whether the absolute minimization of Kähler action corresponds to
some variational principle in HO. This action principle should have sub-group of local G2

as dynamical symmetries.

4.2 Does Kähler action allow a generalized conformal invariance?

Generalized conformal invariance in dimension d = 4 is a generalization of conformal invariance
in dimension d = 2, where the metric tensor transforms by a multiplicative factor in conformal
transformations. Note that also the ordinary Maxwell action possesses conformal invariance. This
conformal invariance could be realized in terms of hyper-octonion analytic maps of HO possibly
inducing hyper-quaternion analytic maps of space-time surfaces in the foliation and thus corre-
sponding maps of H = M4 × CP2.

In algebraic context the norm for the vectors in n-dimensional algebraic extension is obtained
as a special case of n-linear function of n-vectors rather 2-linear function of 2 vectors. This means
that in dimension d = 4 the algebraically natural quantity is the four-tensor
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Mαβµν = gαµgβν − gανgβµ , (40)

which represents the metric in the space of the induced sigma matrices.
The conformal covariance of M is however un-necessarily strong condition since it is the con-

traction of M with the quantity Kαβµν = JαβJµν having vanishing conformal weight, which defines
Kähler action density. One can express square root of metric determinant as square root of the
quantity εαβγδεα1β1µ1ν1Mαα1ββ1Mγγ1δδ1 and the metric determinant disappears from field equa-
tions. Kähler action density can be written in terms of these quantities as

LK = MαβµνKαβµν

√
det(g) ≡ M ·K√g ,

det(g) = εαβγδεα1β1µ1ν1Mαα1ββ1 . (41)

Both metric and Mαβµν might fail to transform multiplicatively. What is needed is that M ·K and√
g transform with opposite conformal factors in algebraically analytic deformation. Unless the

deformation reduces to a canonical transformation, it modifies induced Kähler form and Mαβµν

cannot transform multiplicatively if the deformation is generalized conformal transformation. In
dimension d = 4n the counterpart of the tensor M is the tensor defined by the inner products for
the antisymmetrized products of 2n gamma matrices whereas K corresponds to a tensor power of
Kähler form.

One can eliminate all un-necessary complications due to the signature of the metric and possible
existence problems (vielbein involves square roots of the metric components and need not exist
except in special points) by reducing the study of the generalized conformal symmetries to the
study of the behavior of quantities M ·K and

√
g under algebraically analytic transformations.

4.3 Generalized conformal invariance and Euler-Lagrange equations

The realization of the generalized conformal invariance at the level of the field equations boils
down to the vanishing of certain tensor contractions. For minimal surfaces encountered in string
models algebraic analyticity means that second fundamental form is holomorphic tensor having
only components of type (2,0) and (0,2) whereas metric is tensor of type (1,1). Therefore the field
equations, which state the vanishing of the contraction of metric and second fundamental form,
are satisfied. In present case the situation is very much like this.

1. For the families of extremals studied in [D1] Lorentz Kähler 4-force vanishes. The interpreta-
tion is as a space-time correlate for the absence of dissipation for asymptotic self-organization
patterns. Absolute minimization of Kähler action would correspond to the second law of
thermodynamics. One the known solutions represent only asymptotic patterns, which by the
effective 2-dimensionality might be however quite enough for the needs of quantum TGD.

2. Field equations involve the contraction TαβDβ∂αhk of the energy momentum tensor Tαβ

with the second fundamental form defined by the covariant derivatives of the coordinate
gradients ∂αhk. This contraction vanishes for all known solutions of field equations. Field
equations contain also terms involving the contraction of the Kähler gauge current jα

K with
the gradients of CP2 coordinates. The contraction vanishes for all known solutions of field
equations because Kähler current either vanishes or is light like.

3. Field equations are satisfied if energy momentum tensor has only non-diagonal components.
If the induced metric contains no diagonal components, energy momentum tensor is indeed of
the required type. The non-diagonality of the induced metric however implies minimal surface
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property, and there must exist and indeed exist (”massless extremals”) more general solutions
with non-diagonal energy momentum tensor but with metric having diagonal components.
This solution family is invariant under canonical transformations of CP2 and the solutions
have 2-dimensional CP2 projection. Field equations are satisfied because energy momentum
tensor is a light like tensor: the contraction of light like diagonal component of energy
momentum tensor with the second fundamental form vanish since second fundamental form
does not have corresponding component.

4. For CP2 type extremals and cosmic strings Kähler gauge current vanishes. Self-duality of the
induced Kähler form is one manner to satisfy field equations and in this case Kähler current
vanishes. Vacuum extremals are an especially interesting type of extremals: also these could
define algebraically analytic surfaces under some additional conditions.

4.4 Can the hyper-quaternionic solution ansatz be consistent with field
equations associated with Kähler action?

The first thing to do is to check whether the properties of hyper-octonion analytic solution ansatz
are consistent with HO−H duality. The most obvious consistency requirements are satisfied. In H
picture the field equations are formulated in terms of metric and Kähler form. The counterparts of
metric and Kähler form should appear also in HO picture. At the level of HO the preferred hyper-
octonion unit of HO would serve as the counterpart of the Kähler form. The decomposition of the
tangent space of HO to hyper-quaternionic subspace and its complement requires the introduction
of HO metric and the metric of X4 induced from it. More precisely, the induction of U(2) vector
fields to HO and space-time surfaces requires index raising by HO metric and induced metric.

4.4.1 No hyper-quaternion analyticity at the level of H = M4 × CP2

The basic question is whether hyper-octonion analyticity allows to express HO coordinates as
hyper-quaternion analytic functions with real Laurent coefficients of a preferred hyper-quaternionic
space-time coordinate h and whether the contraction of the energy momentum tensor and second
fundamental form vanishes for each index pair separately in these coordinates.

The fact that the solution ansatz selection unique hyper-complex structure at each point of
HO suggests that it is not possible to achieve hyper-quaternionic analyticity for M4 × CP2. Also
the fact that the Hyper Kähler structure of CP2 fails to be covariantly constant supports the same
conclusion.

This view is supported by the properties of rather general families of solutions of field equation
constructed in [D1]. Hamilton-Jacobi coordinates are of form (u, v, w, w) where u and v are light-
like and (w, w) complex coordinates for the decomposition T (M4) = M2×E2 of the tangent space
of M4. CP2 possesses also complex coordinates. At the level of HO this decomposition is replaced
by the hyper-quaternionic coordinate h = t +

√−1(Iz + Jx + IJy). Since
√−1J corresponds to√−1Jxy, the Kähler form in the plane E2, the relationship must be very intimate. known facts

about the solutions of field equations.

4.4.2 HO and HQ analyticities as local symmetries?

HQ analyticity should be realized as a symmetry of the field equations associated with the Kähler
action in the sense that HQ analytic deformations of the space-time surface define dynamical sym-
metries preserving the value of the action density. HQ analyticity is extremely strong constraint on
dynamics, actually implying effective 2-dimensionality. HQ analyticity is in complete accordance
with quantum criticality which is expected to give rise to a generalization of the 2-dimensional
conformal invariance to a four-dimensional one. The conformal properties of the four-dimensional
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light cone boundary allow also a realization of complex super-conformal invariance: these two
conformal symmetries are separate things.

HQ analytic transformations of the space-time coordinate give rise to mere coordinate trans-
formations realizing conformal invariance as a gauge symmetry. The genuine deformations of the
space-time surface represented by HQ analytic maps would in turn correspond to genuine dy-
namical conformal degrees of freedom. On the other hand, HO analytic maps of HO possibly
generating new solutions to field equations would act also in the interior of the space-time surface
non-trivially.

4.4.3 Hyper-octonionic analyticity and effective 2-dimensionality

The number of local integrability conditions is 6 corresponding to all index pairs for U(2) algebra
so that 8 − 6 = 2 free functions should appear in the map g. The effective 2-dimensionality for
the absolute minima is basic ideas of TGD and means that they are determined by the data at
partonic 2-surfaces so that also this suggests algebraic two-dimensionality.

The effective 1-dimensionality due to the real analyticity of the hyper-octonionic map, would
suggests that the ansatz is too limited. As a matter fact, g is expressible in terms of the conjugate
of the hyper-octonionic map and its conjugate so that g depends on both hT (that is 3 ⊕ 3 of h)
and its conjugate and in this the situation is algebraically 2-dimensional. That the longitudinal
degrees of freedom corresponding to (1, e1) tangent plane do not appear in the expression for g,
has physical interpretation in terms of the elimination of longitudinal polarizations. An analogous
phenomenon occurs also for the known solutions and in Hamilton Jacobi coordinates (u, v, w, w
for M4 it corresponds to the plane spanned by the light-like coordinates u and v.

4.4.4 What is the dynamics of local HO automorphisms

The local G2 element has interpretation as a local choice of the plane of un-physical polarizations
or equivalently the plane of physical polarizations at space-time level. Also the interpretation as a
local choice of quantization axis of angular momentum is possible.

The question is whether the local G2 element f is completely free or whether the dynamics of
Kähler action poses conditions on f .

1. If the choice is completely free, the action principle associated with HO dynamics would
possess the dynamical analog of full local G2 gauge invariance. This symmetry would become
a dynamical symmetry in H picture, and could correspond to zero modes which do not reduce
to gauge degrees of freedom although they do not quantum fluctuate (that is contribute to
configuration space metric). A possible algebraic constraint is the commutativity ĝ◦ f̂ = f̂ ◦ ĝ
implied by f(h) = f(h/|h|). The freedom to perform (almost) completely free hyper-octonion
automorphisms f(h) would give hopes of understanding the vacuum degeneracy of the Kähler
action.

2. There is a definite analogy with WZW model where a local Lie group element f defines the
dynamical variable. In this case f is expressible in the form fL(z)f−1

R (z) at 2-D boundary of
3-surfaces and continued to the interior in arbitrary manner. Conservation laws for Kähler
action should however pose constraints on the G2 local rotation of the imaginary part of h.
This suggests that in case of non-vacuum extremals f obeys field equations of some kind in
entire HO.

3. An attractive possibility is that ordinary analyticity of WZW case is replaced with hyper-
octonion real-analyticity so that both g and f would be determined by the data at 2-D
string like surface X2

l for which the tangent space at each point is spanned by real unit 1
and preferred imaginary unit e1. This would mean effective 2-dimensionality. WZW action
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with kinetic term restricted to this X2
l and topological term restricted to a light-like causal

determinant X3
l suggests itself as the dynamics. Also hyper-octonionic Dirac action could

be restricted to X2
l . The outcome would be a reduction to an 8-D variant of string model.

4. The effective 2-dimensionality is a highly attractive notion but one must consider also other
than hyper-octonion analytic continuations from X2

l to HO, which might thus characterize
only some particular solution types such as non-vacuum extremals or asymptotic solutions
with vanishing Lorentz Kähler force and light-like Kähler current.

In fact, the existence of vacuum extremals requires more general local automorphisms than hyper-
octonion analytic ones. If the map f : HO → S6 is such that the direction of the imaginary part
depends on one parameter only, the image of HO in SU(3) is 1-dimensional and CP2 projection
is also at most 1-dimensional. Vacuum extremals are obtained also when the SU(3) image of HO
is at least 4-dimensional and contains U(2) subgroup: X4 = (g ◦ f)−1(U(2)) would represent a
vacuum extremal in this case. It is easy to imagine a situation in which f varies in such a manner
that the foliation contains both vacuum extremals and non-vacuum extremals. An open question is
whether the dimension of CP2 image g◦f(X3), X3 ⊂ X4 can vary from say 1 to 3 for a four-surface
X4 in a foliation defined by an arbitrary function f .

There is an interesting connection with the conjecture that S6 does not allow complex structure
although it allows almost complex structure which does not allow the representations of imaginary
unit in local coordinates. Just before his death Chern published a proposal for a proof of this
conjecture [37, 38]. Kähler structure is prerequisite for quantization so that the conjecture would
be consistent with the idea that neither Kähler nor complex structure are possible in these degrees
degrees of freedom so that local S6 should indeed represent non-quantum fluctuating zero modes.

4.5 Spinors, calibrations, super-symmetries, and absolute minima of
Kähler action

The proposed construction brings in mind the notion of calibration [20] and its connection with
super-symmetries and minimal surfaces. There is a brief but very nice summary of this connection
at the home page of Jose’ Figueroa-O’Farrill [40]. Calibrations have been applied in a systematic
study of branes [54, 42, 41].

4.5.1 Calibrations, minimal surfaces, spinors, and super-symmetries

The following arguments summarize the brief popular discussion, which can found at [40]. A more
detailed source giving a lot of examples is the web article of Robert McLean [43] about deformations
of calibration manifolds.

1. The notion of calibration

Let H be a manifold endowed with a Riemannian or pseudo Riemannian metric. A p-plane Π
can be characterized by the p vectors ea of H spanning Π as a vector space. Calibration in H can
be defined as a closed p-form ω satisfying for each p-plane the condition

ω(Π) ≤ dvol(Π) . (42)

Here the right hand side gives the volume of the p-plane in the metric of H, and is proportional
to the square root of the determinant of the induced metric in p-plane. Π is said to be calibrated
if the inequality is saturated:

ω(Π) = ω(e1, ..., ep) = dvol(Π) . (43)
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A p-dimensional sub-manifold M is calibrated if the equality holds true for its tangent plane at each
point. A fundamental result is that the manifolds satisfying this condition are minimal surfaces in
a given homology class.

2. Examples

Since all known extremals of Kähler action with a non-vanishing action density are minimal
surfaces calibrations are of obvious relevance also from TGD point of view. Some examples of
calibrations are given in [43].

1. In 2m-dimensional Kähler manifold the exterior powers Jp/p! of the Kähler form define 2p-
dimensional calibrations and the minimal surfaces in question correspond to p-dimensional
complex sub-manifolds. This example has direct relevance for TGD. String like objects
correspond to surfaces X2 × Y 2 ⊂ M4 × CP2 where X2 and Y 2 are minimal surfaces. The
possibility to identify Y 2 as a complex sub-manifold means that the locus of zeros for any
polynomial P (ξ1, ξ2) of CP2 coordinates gives a solution of field equations. An essential point
is that the Kähler current ∂β(Jαβ√g) vanishes by the calibration property.

2. There are also calibrations which are possible only in special dimensions and of obvious inter-
est in the recent case [43]. The associative calibration 3-form and co-associative calibration
4-form both defined in 7-dimensional manifold with holonomy group which is a subgroup of
G2. In recent case the decompositions M4×CP2 = M1×(E3×CP2) and M8 = M1×E7 sug-
gest that static minimal surfaces X4 = M1×X3 could correspond to associative calibrations
and space-like four-surfaces X4 ⊂ E3×CP2 to co-associative calibrations. Cayley-calibration
is 4-form define in 8-D manifold with holonomy contained in Spin(7) and also this calibration
might be of relevance in TGD framework.

3. The connection with spinors

The connection with spinors comes as follows. The tensor products of a spinor field with
its conjugate produce quite generally p-forms, which suggests that spinor fields could be used as
building blocks of differential geometry. From covariantly constant spinors p-forms, which are
also covariantly constant could be constructed. For instance, covariantly constant right handed
neutrino in CP2 gives rise to the CP2 Kähler form. More generally, the solutions of Dirac equation
produce closed p-forms.

Typically the representation of the calibration form in terms of spinor is obtained by considering
covariantly constant spinor ε normalized to unity. The calibration form is of form

ω = dxk1 ∧ ....dxkpεγk1 ...γkpε (44)

The obvious problem from TGD point of view is that for Minkowski signature of the metric of
M8 and chirality condition on ε implies identical vanishing of this kind of forms for p = 4. This
problem is encountered also when octonionic 2-spinors with chiral condition are used. The way
out of this problem is provided by introduction of preferred time direction defining gamma matrix
added to the spinorial expectation value.

4. The connection with super-symmetry

The connection with the super-symmetry was discovered by Becker and Strominger [54]. In [44]
examples about spinorial representations of calibrations in Minkowski space-time with one time
like direction are discussed. The calibrations have dimension p = 1, 2 mod 4 so that 4-dimensional
calibrations of this kind are not possible. The calibration form is defined as
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ω = dxI1 ∧ ... ∧ dxIpεT Γ0I1...Ipε . (45)

Here ε is covariantly constant real spinor normalized to unity (εγ0ε = εT ε = 1) and Γ0...Ip is anti-
symmetrized product of gamma matrices. Note that reality poses conditions on the dimension of
Minkowski space.

For a given tangent plane Π the calibration is given by

ω(Π) =
√

det(g)εT Γ(Π)ε ,

Γ(Π) =
1

p!
√

g
εi1...ipΓ0i1...ip

, (46)

where Γ0i1...ip
is the projection of Γ to the plane Π in some coordinates labelled by i1, ..., ip. If the

restriction on p is satisfied, the condition

Γ2 = 1 (47)

holds true and implies that ω defines a calibration. From this the alternative characterization for
the saturation condition is as

Γ(Π)ε = 1 . (48)

The condition states that the minimal surfaces respecting the super-symmetry generated by co-
variantly constant spinor are minimal surfaces. What this means that the second order partial
differential equations for minimal surfaces are replaced with eigenvalue condition for ε.

4.5.2 TGD based route to the connection between super-symmetry and minimal
surface property

The connection between minimization of volume and super-symmetry emerges in TGD framework
by different argument. The possibility to modify the Dirac action so that super-symmetry is not
lost for Kähler suggests that also the notion of calibration might be generalized.

1. The Dirac equation for induced spinors in X4 ⊂ M4 × CP2 does not allow the covariantly
constant right handed neutrino as a solution unless the trace of the second fundamental
form vanishes which means that minimal surface equation is satisfied. Stated differently: the
super-symmetry defined by the covariantly constant right handed neutrino remains super-
symmetry at the space-time surface only if it is minimal surface.

2. The need to preserve the super-symmetry in the case of Kähler action led to the introduction
of a modified Dirac action [B4] consistent also with the vacuum degeneracy of Kähler action.
The modification works for any general coordinate invariant variational principle.

3. This observation raises the hope that the generalized calibration associated with an action
defined by Kähler action density LK could be defined as a closed 4-form ωK constructed
from the solution of the modified Dirac equation in H or of the hyper-quaternionic Dirac
equation in HO.
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The natural guess is that a 4-dimensional sub-manifold M is Kähler calibrated if the condition

ωK(Π) = LK × ω(Π) = LK × dvol(Π) (49)

holds true for its tangent planes. The generalized Kähler calibration form ωK should be closed
whereas now ω need not be closed anymore. Hence the definition is not equivalent with the
standard calibration unless LK reduces to constant different from zero. The generalization of the
minimal surface condition would be that in a given homology class Kähler calibrated sub-manifolds
are with a proper choice of the sign of action density minima of the action defined by LK .

The above definition is of course only heuristic. The basic question is how the Kähler action
associated with the space-time surface can appear in the calibration, which is defined in HO. The
crucial idea is that the map OH → H assigns to each point of OH a hyper-quaternionic 4-plane
allowing to assign the value of LK with it.

The generalization of the connection with spinors would be of the same form and naturally based
on the use of hyper-octonionic spinors which would also define the calibration. Note however that
covariantly constant right handed neutrino spinor might make it possible to define calibration also
in H.

4.5.3 Are asymptotic solutions of field equations with non-vanishing action density
always minimal surfaces?

In the case of Kähler action the calibration condition would reduce to that for minimal surfaces
when Kähler action density is non-vanishing and become trivial otherwise. This sounds rather
counter-intuitive. However, all the known extremals with non-vanishing Kähler action are indeed
minimal surfaces. The only known extremals which are not minimal surfaces are massless extremals
and vacuum extremals for which Kähler action density indeed vanishes [D1].

These observations force to ask whether absolute minima/maxima would be common for a
wide class of general coordinate invariant action principles. The conjecture is probably wrong.
The reason is that for all known minimal surface solutions of field equations Kahler action density
is constant. If Kähler calibration ωK is expressible as a product LKω, ω reduces to ordinary
calibration when LK is constant and minimal surfaces are obtained as solutions.

The field equations for Kähler action reduce to simple algebraic conditions for the known solu-
tions. This of course could tell mostly only about my personal limitations. There could be however
also deep physics involved. By quantum classical correspondence space-time surfaces should pro-
vide space-time correlates for asymptotic self-organization patterns, and are thus characterized by
the vanishing of Lorentz Kähler 4-force. This requires that Kähler current vanishes or is light-like
and the contraction of the energy momentum tensor with the second fundamental form vanishes:
algebraically this condition is very similar to the minimal surface condition. This is achieved when
energy momentum tensor and second fundamental form share no common index pairs. This is
true also in the case of more general solutions such as massless extremals and vacuum extremals
for which the condition fails for metric.

Asymptotic behavior might indeed correspond to the minimal surface equations or vanishing
of Kähler action. That Kähler action would approach to constant is natural if one accepts the idea
about space-time correlate for thermal equilibrium implying spatio-temporal homogeneity.

4.6 Number theoretic spontaneous compactification and calibrations

The question is whether number theoretic spontaneous compactification and the notion of Kähler
calibration could be unified to a single description. The basic conceptual frameworks indeed share
several common elements such as spinors and it turns out that the notion of Kähler calibration
makes sense.
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4.6.1 The notion of Kähler calibration

What is needed is a generalization of calibration so that minimal surfaces are replaced with the
absolute minima of Kähler action. Hyper-quaternionicity condition is expected to be equivalent
with the saturation condition for Kähler calibration.

The intuitive idea is that the non-closed 4-form ω, which is by definition saturated for the hyper-
quaternionic planes, is not closed and does not therefore define minimal surfaces. ω becomes a
closed form, when multiplied with Kähler action density LK , and by its closedness defines absolute
minima of Kähler action.

1. The map assigning a hyper-quaternionic plane to each point of M8 defines a map M8 → H =
M4 ×CP2, and this map can be used to induce the metric of H and Kähler form of CP2 to
M8. The crucial point is that the image point in CP2 allows to assign to the point of HO a
hyper-quaternionic (or co-hyper-quaternionic) a 4-plane Π. The induced Kähler form J and
its dual ?J can be evaluated for Π, and one can assign Kähler action density LK = J ∧ ?J
to each point of HO.

2. By index lowering operation using the induced metric in Π the contravariant 4-form e1∧..∧e4

defined by the unit tangent vectors of Π gives rise to a four-form ω in H. When evaluated
for the hyper-quaternionic (or co-hyper-quaternionic) plane ω gives its volume. Saturation
obviously occurs since the value of the form is in well defined sense the cosine for the angle
between the plane Π and the hyper-quaternion plane.

3. The form ω is closed in general. The natural idea is that it becomes closed by multiplying it
by a suitable integrating factor. The only natural candidate for the integrating factor is LK .
Thus Kähler calibration would correspond to a closed 4-form

ωK = LKω , (50)

which by construction is saturated by hyper-quaternionic (or co-hyper-quaternionic) 4-surfaces.

The hope is that the saturation is equivalent with the absolute minimization or at least
extremization of Kähler action. Extremization is consistent with what is known about the
extremals of Kähler action since LK is constant for the known minimal surface extremals for
which Kähler calibration reduces to ordinary calibration.

4. What characterizes the Kähler calibration is the map HO → M4 × CP2. Arbitrary maps
are not allowed since ωK = LKω must be closed. Hyper-octonion real-analytic 2-component
spinor fields Ψ of HO satisfying Weyl condition define in a natural manner maps HO →
M4 × CP2. The conjecture is that these maps define Kähler calibrations which are by
definition saturated by hyper-quaternionic or co-hyper-quaternionic manifolds.

4.6.2 Under what conditions extrema of Kähler action result?

Consider now the conditions under the construction gives extrema of Kähler action.

1. Suppose that Kähler action density has a positive value in a given region of a hyper-
quaternionic 4-surface X4. Closed-ness of ωK implies that for local deformations restricted
in this region the integral of the 4-form ωK remains invariant. Since the value of ω is re-
duced from that for X4, this means that LK

√
g increases in this region so that also Kähler

action increases. On the other hand, if Kähler action density is negative, the value of Kähler
action becomes even more negative in the deformation. Thus one might hope that absolute
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minimum of Kähler action defined using |LK | as an action density has been found or that
the variational principle using LK as an action density minimizes the magnitudes of negative
and positive contributions to the Kähler action separately.

2. There is however a hole in this argument. The point is that LK is not varied at all at a given
point of M8 but fixed to its value for the selected hyper-quaternionic 4-plane. The manner
to achieve a real minimum is to assume that the hyper-quaternionic plane at a given point
provides a local minimum of the magnitude of LK in the set of 4-planes at that point. The
property of being an integrating factor should be consistent, and one might hope equivalent,
with this property.

The basic question is why just the hyper-quaternionic 4-plane should minimize LK , and why just
LK . The reader can decide whether or not to take with any seriousness the following linguistic
musings. LK is the only non-trivial action density defined by the map M8 → M4 × CP2 (J ∧ J
would define a trivial action). The plane in question must be characterized by this map and
CP2 point indeed selects uniquely the hyper-quaternionic plane among other planes. The 4-form
characterizing the plane and its spinorial counterpart should be expressible using octonionic algebra
operations, and the possible non-uniqueness due to non-associativity must be avoided. Hyper-
quaternionic plane and its dual are again the only natural candidates.

4.6.3 The number theoretic variational principle is not equivalent with the absolute
minimization of Kähler action

There are two alternative identifications for the variational principle implied by the notion of
Kähler calibration. Neither of them is consistent with absolute minimization of Kähler action.

1. The absolute minimization of the action defined by the absolute value |LK | of the Kähler
action density is the first candidate for a variational principle. The problem is that the net
action for the entire Universe is very probably infinite for this option, and the exponent of
Kähler action infinite depending on the sign of Kähler function.

2. If LK defines the action density, the number theoretic variational principle would minimize
the magnitudes of positive and negative contributions to the action separately and be there-
fore very conservative. The action for the entire universe would tend to be small so that this
option is strongly favored.

For both options Universe would do its best to save energy, being as near as possible to vacuum.
Also vacuum extremals would become absolute minima: note that they would be only inertial
vacua and carry non-vanishing density gravitational energy. The non-determinism of the vacuum
extremals would have an interpretation in terms of the ability of Universe to engineer itself.

The 3-surfaces for which CP2 projection is at least 2-dimensional and not a Lagrange mani-
fold would correspond to non-vacua since conservation laws do not leave any other option. The
variational principle would favor equally magnetic and electric configurations whereas absolute
minimization of action based on LK would favor electric configurations. The positive and negative
contributions would be minimized for 4-surfaces in relative homology class since the boundary of
X4 defined by the intersections with 7-D light-like causal determinants would be fixed. Without
this constraint only vacuum bubbles would result.

The attractiveness of the number theoretical variational principle from the point of calculability
of TGD would be that the initial values for the time derivatives of the imbedding space coordinates
at X3 at light-like 7-D causal determinant could be computed by requiring that the energy of the
solution is minimized. This could mean a computerizable solution to the construction of Kähler
function.
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4.6.4 Does a solution of hyper-octonionic Dirac equation define Kähler calibration?

Absolute minima of Kähler action should correspond in a dual manner to 4-surfaces in HO assigned
to the hyper-octonion analytic solutions of the hyper-octonionic Dirac equation. The solution of
the hyper-octonionic Dirac equation defines an element of the local SU(3) Lie algebra and the
exponentiation of this vector field defines map to SU(3). The projection to CP2 fixes the local
hyper-quaternionic plane in HO.

The solutions of field equations defined by Kähler action should correspond to integrable dis-
tributions of these planes. This means that the tangent plane of the 4-surface coincides with the
hyper-quaternionic plane at each point and the search for solutions would be very much like fine
tuning (calibrating!) these planes. The guess is that the closedness of ωK is enough to guarantee
this and is implied by the hyper-octonion analyticity.

The induced metric and Kähler form appear naturally in the construction. The selection of the
preferred complex plane (hyper-octonionic imaginary unit) naturally corresponds to the induction
of CP2 Kähler form to HO by the map HO → M4×CP2 defined by the octonionic spinor field Ψ
and by the canonical projection M8 → M4. Also the metric of M4 × CP2 can be induced to HO
by this map. The consistency of the number theoretical metric signature with the signature of the
induced metric favors hyper-octonions rather than octonions.

Since hyper-octonionic gamma matrices are used in the hyper-octonionic Dirac equation, in-
duced metric does not appear at all in the Dirac equation involving only contravariant gamma
matrices γk. Hence the solutions Ψ of the Dirac equation do not depend in any manner on the
induced quantities. Induced metric appears only in the conditions defining the calibration and
calibrated 4-surfaces.

If the tangent vectors ei of the plane are regarded as hyper-octonionic vectors, and if the plane
were not hyper-quaternionic, non-associativity could cause problems. For co-hyper-quaternionic
planes the HO dual of ω is uniquely defined. Thus hyper-quaternionicity and its co-property seem
to be forced by the internal consistency.

4.6.5 Co-hyper-quaternionicity and dual of Kähler calibration

One can argue that that the local minimization of LK in the definition of Kähler calibration does
not allow extremals with large Kähler action density, the most notable examples being CP2 type
extremals and cosmic strings. Therefore co-hyper-quaternionicity seems to be necessary.

One can imagine two options in co-hyper-quaternionic case.

1. The first option is that the local maximum (rather than minimum) of Kähler action density
LK defines the dual calibration. Dual Kähler calibration would maximize contrasts in the
sense that the absolute value of the contribution to the action from a region with a fixed
value of action density would be maximized. Stability considerations disfavor this option but
quantum criticality characterized by large fluctuations favors it. Also the fact that Kähler
action for CP2 plays key role in TGD, favors this option. One might say that for this
option universe and also configuration space of 3-surfaces would divide into disjoint regions
corresponding to hawks and doves.

Since there would be 3-surfaces which correspond to both Kähler function K and its dual
KD, uniqueness problems are encountered unless the Kähler functions are related by a trans-
formation K = KD +Φ(Z)+Φ(Z), where Φ is an analytic function of complex configuration
space coordinates Z so that metric and Kähler form remain invariant.

2. An alternative option is the introduction of the dual of Kähler action defined by the normal
projection of CP2 Kähler form (this will be discussed later in more detail). One cannot
exclude the equivalence of this option with a). This option would be conservative. Since
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dual action vanishes for CP2 for type extremals, this option would allow also them. The
problem is that CP2 action disappears from the theory. The same transformation as above
must relate K and KD.

4.7 Kähler calibration and spinor fields

Ordinary calibrations relate closely to spinors and one can wonder whether this is the case also
now.

4.7.1 Does the spinorial equivalent for field equations exist?

The question is how to generalize the characterization of calibration in terms of covariantly constant
spinor to the recent case. It is obvious that instead of Kähler calibration ωK the non-closed form ω
saturated for hyper-quaternionic 4-planes or their duals should be represented in terms of a spinor
field normalized to unity as an ”expectation value” of a suitable sigma matrix.

There are two options concerning the choice of the spinor.
Option 1: The covariantly constant right handed neutrino spinor of H, which is unique defined

apart from a Lorentz rotation, is used.
Option 2: The octonionic spinor Ψ is used. In this case gamma matrices are 2 × 2 octonionic

gamma matrices and non-associative. This would give strong motivation for why the only sensible
calibrations are hyper-quaternionic or co-hyper quaternionic.

In both cases the problem is that in the 4-dimensional case the expectation value of an anti-
symmetrized product of four gamma matrices for a spinor field of definite chirality vanishes iden-
tically. In order to obtain a non-vanishing result an additional gamma matrix must be introduced
to the expectation value in a Lorentz invariant manner. The real octonion unit defines a preferred
time like direction and the most natural identification of this time coordinate is as light cone
proper time a =

√
mklmkml. The unit vector nk defined by the gradient ∂a/∂mk with respect to

flat M4 coordinates contracted with contra-variant gamma matrices would define gamma matrix
N ≡ γa = nkγk satisfying γ2

a = gaa = 1.
The calibration form ω is the wedge product of the 1-forms associated with the four unit vectors

eI defining the tangent vectors of the hyper-quaternionic plane:

ω = e1
k1

e2
k2

e3
k3

e4
k4

dhk1 ∧ .... ∧ dhk4 .

(51)

The anti-symmetrizations of the products e1
k1

e2
k2

e3
k3

e4
k4

are expressible as expectation values of
completely anti-symmetrized products of gamma matrices as

εk1...k4e1
k1

...e4
k4

= ψNcl1
k1

....cl4
k4

Γl1...l4ψ ,

N = nkγk . (52)

Here εk1k2k3k4 is permutation symbol having values ±1, 0, cl
k are some coefficients, and ψ is a

spinor with unit norm: ψNψ = 1.
The value of ω for a general plane Π is

ω(Π) =
√

gψNΓ(Π)ψ ,

Γ(Π) =
1

4!
√

g
× εα1...α4 × ∂(hk1 , ..., hk4)

∂(xα1 , ..., xα4)
× cl1

k1
....cl4

k4
× Γl1...l4 .

(53)
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The condition Γ2(Π) = 1 should hold true and would express the generalization of the identify
(nkγk)2 = 1 satisfied by a unit vector generalized to the case of 4-plane. The expectation value
has interpretation as cosine of the angle between Π and hyper-quaternionic plane. For the hyper-
quaternionic planes the condition

Γ(Π)ψ = ψ (54)

is satisfied by construction.
In the hyper-octonionic case gamma matrices are covariant hyper-octonionic 2 × 2-matrices.

The lowering of the indices of contravariant gamma matrices is performed by using the metric
induced from H to HO.

The unit spinor ψ should relate closely to the hyper-octonionic spinor field Ψ characterizing the
distribution of hyper-quaternionic planes. A possible identification for the unit spinor ψ is as the
imaginary part Im(Ψ) of the octonion represented by Ψ normalized to unity. This identification
is sensible everywhere except at the origin of HO. Also Ψ could be normalized to a unit octonion.
The normalization is possible unless Ψ is light-like octonion. The association of singularities with
light-like octonions would be very natural physically. The gamma matrix N would naturally
correspond to the matrix γ0.

The hyper-octonionic representation is definitely different from the ordinary Clifford algebra
representation. The fact that calibrated planes are hyper-quaternionic means that non-associativity
in the product of gamma matrices does not cause uniqueness problems in the definition of ω using
Ψ if the associativity of the tangent vectors is equivalent with the associativity of the corresponding
1-forms. Hence it seems that purely number theoretic constraints give for hyper-quaternionic and
co-hyper-quaternionic calibrations a unique status.

4.7.2 Could the solutions of hyper-octonionic Dirac equation define a foliation of
solutions of the modified Dirac equation?

Super-symmetry inspires the question whether the modified Dirac equation associated with Kähler
action could be satisfied by Ψ restricted to X4. This conjecture would mean that the theory
could be solved both in fermionic and bosonic sector by the same general solution ansatz. This
correspondence makes only sense if it is possible to map the induced hyper-octonionic gamma
matrices to the gamma matrices induced from H. Hyper-quaternionicity implies associativity and
raises the hope that the induced hyper-octonionic gamma matrices could be replaced with the
gamma matrices of the imbedding space.

Note however that this ansatz would give only single solution of the modified Dirac equation
in the interior of space-time surface unless there is large number of hyper-octonionic spinor fields
containing the same space-time surface in the foliations that they define. A possible physical
interpretation would be that the spinor field in the interior couples to the surface dynamics and is
determined by it.

5 How HO − H duality could be realized at quantum level
of quantum TGD?

The classical HO −H duality inspires several questions.

1. Does HO picture generalize to quantum level? Should one quantize hyper-octonionic spinors
in some manner consistent with the identification of the space-time surface as a hyper-
quaternionic 4-surface and the requirement that representations of quantum states result in
this manner?
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2. Are HO and H pictures dual and equivalent representations of the dynamics or are they
pieces of a bigger structure needed to understand quantum dynamics.

i) Strict duality brings in mind the somewhat fuzzy notion of 7-3 duality introduced ear-
lier [A2, C1]. Strict duality would mean the dynamics of appropriately quantized hyper-
octonionic spinor fields at space-time interior would be a dual counterpart of the dynamics
of second quantized free spinor fields of H at 3-D light-like CDs.

ii) One can also defend the idea that both H and HO dynamics are needed to obtain a
complete description of dynamics. Since HO dynamics dictates the dynamics of 4-surfaces,
only the spinorial dynamics associated with 3-D light-like CDs would represent H dynamics
not reducible to HO dynamics in the proposed form.

5.1 Only quantized octonionic spinors fields could be consistent with
HO −H duality

A simple argument demonstrates that H −HO duality is possible at quantum level only if octo-
nionic spinor fields are quantized. The requirement that the quantization is consistent with the
identification of space-time surfaces as hyper-quaternionic 4-surfaces fixes the quantization and
provides a connection with quantum measurement theory.

5.1.1 Classical hyper-octonionic spinor fields cannot give rise to HO −H duality at
quantum level

It is easy to get convinced that classical hyper-octonionic spinor fields cannot give rise to HO−H
duality at quantum level. The hyper-octonion analytic functions involve local G2 rotation of the
imaginary part of hyper-octonion. The directions of the imaginary part of Oh(h) correspond to
points in S6. δM8

± and, more naturally, δM4
± × E4, represent the candidates for the counterpart

of 7-D light-like causal determinant (CD) in HO. The restriction to δM8
± (δM4

± × E4) means
metrically a restriction to S6 (S2 ×E4) so that a map from S6 (S2 ×E4) to S6 parameterizes the
local selection of the plane of non-physical polarizations. These local degrees of freedom correspond
to zero modes rather than quantum fluctuating degrees of freedom.

The metric 6-dimensionality of δM4
+ × CP2 conforms with the view that the selection of the

plane of non-physical polarizations in HO leaves 6 local polarization directions. Super-Kac-Moody
and super-canonical degrees of freedom of metrically 6-D δM4

+ ×CP2 correspond to these degrees
of freedom naturally.

If hyper-octonionic spinor fields are classical fields, the restriction or possibly residue of the
hyper-analytic spinor field at 7-D light-like CD X7 ⊂ HO selects only the local plane of non-
physical polarizations at X7, and hyper-octonion analytic degrees of freedom at X7 cannot corre-
spond to super Kac-Moody and super-canonical degrees of freedom.

5.1.2 Real-analytic HO spinor fields as zero modes of HO spinor fields

Classical hyper-octonionic spinor fields cannot code for quantum states nor can they define gamma
matrices of the configuration space CHO of 3-surfaces X3 ⊂ HO. One can imagine two solutions
of the problem.

H spinor fields induced to X4 ⊂ H and satisfying the modified Dirac equation are interpreted
as zero modes representing super-symmetries and are not second quantized. This suggests that
classical hyper-octonionic spinor fields represent zero modes of HO spinor fields just as the solutions
of the modified Dirac equation represent zero modes of induced spinor fields in H. The second
quantized part of induced HO spinor fields at X4 ⊂ HO would define the gamma matrices of
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configuration space CHO acting as super generators. This is certainly what must happen if
HO −H duality is realized at the level of configuration space.

Also the second quantized fields would have 1 + 1 + 3 + 3 decomposition having interpretation
in terms of leptons and quarks. The fermionic oscillator operator valued Laurent coefficients of the
quantized hyper-octonionic spinor field would commute with the hyper-octonionic units and have
interpretation in terms of leptonic and quark like creation operators and anti-leptonic anti-quark
like annihilation operators: this allows to achieve the conservation of lepton and quark numbers.

Strict HO −H duality requires however more than this. Full HO −H duality would suggest
that
i) second quantization occurs for induced spinor fields at X4 ⊂ HO (X4 ⊂ H) but it is an open
question whether and in what sense it occurs for spinor fields in HO (H),
ii) also the solutions of massless Dirac equation in H play a role analogous to that played by
real-analytic spinor fields in HO and define the same foliation of HO as real-analytic HO spinor
fields.

It would be awkward to introduce X4 and H (HO) spinor fields as independent dynamical
degrees of freedom so that there should be a relation between them. The simplest relation is that
the induced spinor fields satisfying the modified Dirac equation at the 4-surfaces of the foliation
can be regarded as restrictions of H (HO) spinor fields satisfying the massless Dirac equation in
H (HO). This could hold true not only for the zero mode part but also for the second quantized
part of these spinor fields. This point will be discussed in last section of the chapter.

5.1.3 Do HO spinor fields provide a representation for observables characterizing
quantum state as a space-time surface?

In some sense HO spinor fields or at least the induced HO spinor fields must be quantized. The
original idea was that hyper-octonionic spinor field is quantized so that its Laurent coefficients
become mutually commuting Hermitian operators acting in the representation space of super-
Kac-Moody and super-canonical algebras. Although this quantization is not necessary and not
enough to construct configuration space spinor structure in CHO, it could quite neatly realize
quantum classical correspondence. Of course, one must be cautious in introducing any kind of
extra structure but the idea is so beautiful that it deserves a discussion.

Also the real matrix elements of the matrix representing HO-local G2 rotation would be ex-
pressible in terms of commuting Hermitian operators. The Hermitian matrix elements associated
with different points of HO need not commute. Physical intuition however suggests that they
commute for points in a maximal deterministic region of a given space-time sheet since maximal
deterministic regions represent final states of quantum jumps classically.

The commutativity at different points of a maximal deterministic region of space-time sheet
could be interpreted as existence of a wave function, and would be therefore a number theo-
retic counterpart for quantum coherence. Thus hyper-octonion spinor field would be more like
Schrödinger amplitude coding for quantum states via its Laurent series than quantum field. There
is a definite analogy with a foliation of 2n-dimensional phase space by Lagrangian manifolds by
n-dimensional surfaces at which wave functions are defined in geometric quantization.

A one-one correspondence with quantum states is achieved if the Hermitian operators in ques-
tion represent a complete set of observables allowing to fix uniquely the physical state. In this
context the hierarchy of infinite primes represented as hyper-octonion analytic polynomials [E3]
would correspond to a hierarchy in which the number of mutually commuting observables would
increase. The requirement that the eigenvalues of operator coefficients are consistent with the
interpretation in terms of infinite primes gives constraints on the choice of observables. A repre-
sentational triad consisting of quantum states, space-time surfaces, and infinite primes emerges.

This picture is also consistent with the general ideas about state function reduction as a local-
ization in the zero modes interpreted as non-quantum fluctuating parameters labelling 3-surfaces.
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The 4-D parameter space P labelling the (hyper-quaternionic) maximal deterministic regions in
the foliation corresponds to zero modes. Quantum superpositions of these regions correspond to
wave functions in P . The Hermitian operators representing G2 matrix elements at maximal de-
terministic regions corresponding to different points of P do not commute in general. Hence state
function reduction forces a complete localization in P , and the final state is completely classical,
single space-time surface. The matrix element of the inner product between a P -non-local state
resulting in ”U-process” and a P -localized, completely classical state resulting in the state function
reduction is well-defined and finite.

The quantization of the notion of space-time as a hyper-quaternionic surface adds a further
candidate to the long list of non-commutative/quantum geometries. Space-time could be well
defined classically only in eigen-states of the mutually commuting Hermitian coefficients of the
hyper-octonionic power series, and this would force the map of quantum states to space-time
surfaces.

This interpretation would also provide a further perspective to the notion of quantum classical
correspondence by assigning a foliation of space-time surfaces to given eigenvalues of observables
and representing a local selection of non-physical polarization directions representing the selection
of quantization axis of spin at space-time level. Space-time or rather foliation of HO by space-time
surfaces would be an ”emergent” phenomenon providing a representation for quantum state.

A word of criticism is of course in order. The problem of how the observables are represented
by the Laurent coefficients of HO spinor fields have not been discussed at all. If there exists no
simple answer to this problem, the proposed quantization remains a nice looking but un-necessary
branch in the tree of TGD.

5.2 Universal expressions for vertices using HO −H duality?

The dynamics of generalized Feynman diagrams involves propagation and vertices at which space-
time sheets are glued together along their ends. The challenge is to code this dynamics into the
dynamics of hyper-octonionic spinor fields. Sometimes it is a good idea to be really brave. So, let
us ask how simple the HO description of generalized Feynman diagrams could be at HO level.
The answer is amazing in its generality: octonionic inner product and product, or equivalently
duality and triality, provide universal expressions for 2-vertices and n-vertices in HO picture!

This prescription was originally proposed for real HO spinor fields with Hermitian Laurent
coefficients and the following consideration are restricted to this case.

5.2.1 Propagation and hyper-octonionic inner product

The octonionic part of the inner product for hyper-octonionic spinors provides a good candidate
for S-matrix elements describing internal transitions of particle understood in an extremely general
sense. A Feynman diagrammatic interpretation of the single particle S-matrix elements is in terms
of 2-vertices appearing naturally in the approach in which S-matrix results as a generalization of
the unitary S-matrix associated with braidings [E9, C5].

1. Quantum classical correspondence implies that maximal deterministic regions correspond
to space-time correlates of the final states of quantum jumps. In H picture 3-D light-like
causal determinants at which the non-determinism of quantum jumps is located code for the
dynamics. This could be true also in HO picture although one cannot exclude 3-D space-like
causal determinants from the consideration.

2. Suppose that HO−H duality means that interior dynamics of HO hyper-octonionic spinors
codes for the quantum evolution at space-time level. This means that all details about
partonic description are coded implicitly to the mutually commuting Hermitian Laurent
coefficients of G2 matrix elements and of HO analytic function.
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3. Assume that the convergence regions for the power series defining G2 matrix elements and
hyper-octonionic Taylor series correspond to maximal deterministic regions. Assume the
commutativity of Hermitian operators representing G2 rotations inside these regions. At the
boundaries of these regions G2 element is discontinuous. What these assumptions state is
essentially quantum coherence in generalized sense.

4. p-Adic topology allows description of non-determinism in terms of p-adic pseudo-constants.
For some value of p p-adic topology is an excellent candidate for the effective topology in
which these discontinuities are not discontinuities anymore. p-Adic fractality would charac-
terize the breaking of quantum coherence.

5. Hyper-octonionic spinor field allows a natural inner product defined as an integral of the
overlap of the spinor field at the two sides of discontinuity characterized by 3-dimensional CD.
These integrals might actually reduce to integrals over 1-D string like surfaces. 2-component
spinors with Weyl condition certainly suggest this. Also hyper-octonion analyticity, if it
generalizes to the case of local G2 rotation, means that the information characterizing hyper-
octonionic spinor field is coded by 1-D curves.

6. If hyper-octonionic spinor fields code for quantum states, it is natural to assume that this
inner product codes for the S-matrix element for the transition between initial and final
internal states determined by the discontinuities of G2 matrix element and hyper-octonion
analytic power series. The value of this inner product, call it Smn, is in general a complexified
octonion. The octonionic part of Smn can be interpreted as a complex number with the
direction of the imaginary part determining the identification of the imaginary unit. Smn

would have interpretation as the S-matrix element between the initial and final internal states
of the particle.

5.2.2 Interaction vertices and generalized Feynman diagrams as computations

The generalized Feynman diagrams differ from braid diagrams by the presence of n > 2 vertices.
In the generalized vertices n > 2 space-time sheets are glued together along their ends just like
the ends of lines in the vertex of an ordinary Feynman diagram [C5]. The challenge is to identify
the HO counterpart of the vertex. According to the considerations of [C5] generalized Feynman
diagrams can be regarded as being analogous to computations so that the equivalence of diagrams
with loops to tree diagrams means that these diagrams represent equivalent computations. The
requirement that generalized diagrams are equivalent with tree diagrams implies also that the lines
of tree diagram can be contracted to point so that single n+m vertex remains.

Taking the computational argument very seriously, one can argue that the vertices must be
constructible using hyper-octonionic product and inner product. The octonionic 2-spinors satisfy-
ing Weyl condition are in 1-1 correspondence with octonions so that product and inner product
for hyper-octonionic spinors reduce to those for hyper-octonions. Apart from the constraints due
to statistics there are no explicit constraints related to conservation laws since octonions are not
regarded as representations of Spin(8). Of course, the map of quantum states to hyper-octonionic
spinors must take into account these constraints.

The natural guess is that the vertex describing a reaction with n incoming states and n out-
going states reduces to the point-wise inner product of the point-wise product of m incoming
octonion spinor fields and of n outgoing octonionic spinor fields appropriately symmetrized or an-
tisymmetrized in order to take the statistics into account. This point-wise inner product, when
integrated over the 3-surface defining the vertex using the volume element defined by the induced
metric, would give the S-matrix element. The complications due to the non-commutativity and
non-associativity should disappear by the symmetrization/anti-symmetrization required by statis-
tics. The inner product is crossing symmetric.
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The observables representing the quantum numbers of incoming and outgoing state and ap-
pearing as Laurent coefficients need not commute. If it is the eigenvalues of these observables,
which occur in the inner product, vertex is not changed in the unitary transformations of a com-
plete set of observables of a given incoming line induced by, say, rotations. Thus it seems that one
must express all incoming and outgoing states using the same eigen basis so that the matrices of
the unitary transformations appear in the vertices. Situation changes if the observables associated
with different maximal deterministic regions commute. That the selection of observables would be
same for the entire space-time surface rather than inside single maximal deterministic region or
space-time sheet, seems an unrealistic assumption.

Later it will be found that the local G2 element need not be completely free but could be
subject to dynamics and expressible as product g = gL(h)g−1

R (h) just like the solutions of field
equations in WZW conformal field theory. Since the information about hyper-octonionic spinor
field would be restricted on ”string orbits” located most naturally on light-like CDs X3

l , this would
mean that string orbits in HO would code for the whole 4-D theory apart from corrections from
the configuration space integration requiring the knowledge of Kähler function (fixed also by 2-D
dynamics)! In particular, the calculation of S-matrix elements would reduce to the calculation of
inner products of products of hyper-octonionic inner products at 2-dimensional string orbits.

5.2.3 Trialities and TOEs

Three is the sacred number of mystics and religions and it seems that this number is fundamental
also from the point of physics. Indeed, the notion of triality [29] is fundamental for the mathematics
of both string models and as it seems, also of TGD. Triality is a non-degenerate trilinear map
t : V1 × V2 × V3 → R of three vector spaces isomorphic to each other. A normed triality satisfies
the bound t(a, b, c) ≤ 1 and for given a and b inequality is always saturated by some choice of c.
Trialities are very rare and it can be shown that they correspond to the classical division algebras.
Triality can be expressed in terms of the operations of the division algebra as t(a, b, c) = Re(cab),
and is symmetric with respect to the cyclic permutations of its arguments.

Trialities relate closely to spinors and Clifford algebras [29]. The existence of triality corre-
sponds to the fact that Clifford algebras in dimensions n = 3 and n = 7 decompose to a sum of
two reducible real representations of Spin(n + 1) having dimension n + 1 corresponding to two
chiralities of Majorana spinors. Triality can be identified as the map Vn×S+

n ×S−n → R, where Vn

corresponds to n+1-dimensional vector representation of Spin(n+1) acting on n+1- component
Majorana-Weyl spinors of positive and negative chirality as gamma matrices (note the restriction
n = 3, 7). The automorphism group of the octonionic triality is Spin(8), the Lie group with the
most symmetric Dynkin diagram, for which the three outer nodes of diagram correspond to the
8-dimensional vector representation and left and right handed spinor representations of Spin(8).

Triality is an excellent candidate for defining fundamental coupling structures. The basic
problem is that the octonionic norm is Euclidian. In string models this forces to increase of space-
time dimension to 10 by replacing E8 with M(1, 9). The crucial observation is that SL(2, O),
which is isomorphic to SO(1, 9) acts in a natural manner in O2 just like SL(2, C) acts in the space
of 2-component complex spinors.

In TGD framework the introduction of hyper-octonions provides the means for overcoming the
difficulties caused by the Minkowskian signature. By linearity the octonionic triality t(h1, h2, h3)
generalizes without difficulties to the hyper-octonionic case. The replacement of real spinors with
hyper-octonionic 2-spinors is of course also essential. A further element is the new interpretation
inspired by HO −H duality.

The appropriately symmetrized triality of three hyper-octonionic spinor fields integrated over
the 3-surface defining the 3-vertex suggest a universal number theoretic coding of the generalized
3-vertex. Higher vertices are obtained by forming composite functions in which the map (h1, h2) →
h3 = h1h2 defined by triality with the help of duality defined by the inner product is used. This
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boils down to the straightforward formation of octonion products for incoming and outgoing states.
Thus duality would define propagation and triality would determine interaction vertices and thus
also coupling constants at extremely general level. Hence the idea about correspondence between
algebra operations and particle interactions developed in [C5] to an axiomatic form using the
notion of bi-algebras would be realized very concretely in HO picture.

5.2.4 Number theoretic construction of vertices fails for second quantized parts of
HO spinor fields

The previous arguments were based on the classical part of HO spinor field and on strong quantum-
classical correspondence allowing to express S-matrix elements in terms of overlaps of the classical
quantities.

The prescription does not have a natural generalization to the case of second quantized HO
spinor fields having 1 + 1 + 3 + 3 decomposition in terms of hyper-octonionic imaginary units
and fermionic oscillator operator valued coefficients commuting with them. The obvious reason
is that fermion number conservation allows only vertices with an even number of lines and forces
a restriction to the components of second quantized HO spinor field with a well defined fermion
number.

If number theoretic prescription works, it allows a dual coding of S-matrix in terms of classical
data alone. Classical real-analytic HO spinor field would map to a given 3-surface a unique
quantum state whereas configuration space spin degrees of freedom assign an infinite number of
different states to a given 3-surface. The paradox might be however avoided. According to TGD
inspired quantum measurement theory, the values of configuration space zero modes and spinorial
zero modes represent classical outcomes of quantum measurements in 1-1 correlation with quantum
states in a given basis. The variation of an element of quantum state basis associated with a given
3-surface would affect the zero modes but leave configuration space metric invariant apart from
possible conformal scaling depending on zero modes.

5.3 Does HO picture reduce to 8-D WZW string model?

The idea that 8-D WZW string model could determine the dynamics of non-vacuum extremals at
both classical and quantum level in HO picture is so far-reaching in its simplicity that it deserves
a serious discussion.

5.3.1 Could WZW action and hyper-octonionic Dirac action reduce the dynamics of
the hyper-octonionic spinor fields to 8-D string model?

The local G2 rotation of the imaginary part of HO coordinate need not be completely free, and
the most obvious dynamics is the generalization of the dynamics defined by Wess-Zumino-Witten
action to the hyper-octonionic context.

1. The analog of WZW action associated with G2 valued chiral field g(h) in HO would define in
a very natural manner a TQFT as a conformal field theory. G2 valued chiral field would be
quantized in the sense that the Laurent coefficients of the matrix elements of g are Hermitian
operators representing observables coding for the physical states.

2. The generalization of the complex analyticity to hyper-octonion analyticity is highly sugges-
tive. A good guess is that the preferred 3-surfaces correspond to the time-like 3-surfaces X3

at which space-time surfaces are branched. Preferred 2-surfaces would in turn correspond
to the 2-dimensional hyper-complex time-like sub-manifolds X2 of X3 for which the tangent
space is spanned by 1 and the preferred hyper-octonionic unit e1. These surfaces would
be dual to the partonic 2-surfaces (note that corresponding space-time surface correspond
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hyper-quaternionic and co-hyper-quaternionic 4-surfaces intersecting generically in point-
wise manner). This would give a deeper meaning for the choice of the preferred imaginary
unit. The TQFT would be associated with the light-like 3-surfaces X3

l defining generalized
Feynman diagrams in accordance with the TGD inspired view about topological quantum
computation [E9].

3. The counterpart of the kinetic term of WZW action would be assigned with string orbit X2

and topological term with X3. Also the Dirac action for hyper-octonionic spinor field could be
restricted to X2 since all relevant information about the field is coded by Laurent expansion
at this surface. Hence the local G2 element would be obtained by continuing hyper-complex
analytic solutions from X2 to HO and would be expressible as g(h) = gL(h)g−1

R (h) in chiral
decomposition.

4. To gain some understanding about what might be involved it is good to summarize the H
picture, which is based on partons rather than string orbits. H picture makes sense for co-
hyper-quaternionic 4-surfaces, which cannot contain stringy 2-surfaces and the local choice
of the preferred hyper-octonionic imaginary unit is not integrable so that string orbit does
not exist. In H picture the construction would reduce by the effective 2-dimensionality to the
construction of correlation functions at space-like partonic 2-surfaces interpreted as space-like
surfaces X2 = X3

l ∩X3, where X3 is the space-like 3-surface at which the ends of space-time
sheets meet like pages of book and X3

l is light-like CD. In this case G2/SU(3) WZW model
with octonionic spinors does not make sense and is replaced by the modified Dirac action for
second quantized free induced H spinor fields (whether SU(3)/U(2) WZW action is needed
is not quite clear). This is in accordance with the fact that in H picture electro-weak and
ordinary spin are spin like quantum numbers instead of color.

5. In HO picture space-like partonic 2-surfaces are replaced by time-like string orbits and string
model in HO would become a part of TGD in the sense that hyper-octonionic spinor field
would be obtained by an analytic continuation from this surface, and in turn define the space-
time surface. Even the construction of S-matrix at space-time level using HO picture should
reduce to a some kind of string model consistent with duality. Duality allows to translate H
picture to HO picture.

Suppose that 4-surfaces can meet (branch) also along time-like 3-surfaces X3. These 4-surfaces
can contain 3-D causal light-like determinants X3

l (CDs). String orbits would correspond naturally
to the 2-dimensional intersections X3 ∩X3

l . Hyper-octonion analyticity would allow to code gen-
eralized Feynman diagrams to generalized string diagrams and a rather close relation with string
model amplitudes is expected. In particular, the poorly defined path integral over string orbits
would be replaced by a well-defined functional integral defined by the dual of the Kähler function.
The physical interpretation would of course differ dramatically from that in string models since
string orbits would appear as intersections of higher-dimensional objects and would correspond to
physical configurations rather paths connecting them. Therefore functional integral defining loop
summation would not appear in the formalism.

Together with the identification of vertices in terms of local hyper-octonionic products this
would mean an enormous simplification. Only the functional integral over the quantum fluctuations
at configuration space level would require information about space-time surfaces, in particular
about the value of the dual of the Kähler function and its second variation.

5.3.2 Does WZW action define the topological field theory associated with TGD?

The attempt to understand the dynamics of string models has led to the notion of topological string
models [45, 46]. One can ask whether also ”topological TGD” could exist. The TGD inspired vision
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about topological quantum computation [E9] indeed leads to the idea that a topological quantum
field theory counterpart of TGD should exist. The fact that the generalized Feynman diagrams are
obtained from braid diagrams by allowing branchings suggests that the TQFT in question could
define besides knot-, link-, and 3-manifold invariants also more general invariants assignable with
the generalized Feynman diagrams. WZW action appearing naturally in the construction of HO
variant of TGD provides indeed a natural candidate for TQFT associated with TGD.

1. Chern-Simons action and topological QFTs

In the seminal work of Witten [49] the functional integral defined by the exponent of Chern-
Simons action for gauge fields in group G defines knot-, link-, and 3-manifold invariants. The
action density is given by

LCS =
k

4π
Tr

(
A ∧ dA +

2
3
A ∧A ∧A

)
,

where k is integer. The invariants are defined formally as vacuum expectations of products of
Wilson loops defined as traces of non-integrable phase factors for the loops for the components of
the link. The components of the link can corresponds to different irreducible representations of G.

The perturbative calculation of the invariants is based on saddle point approximation around
pure gauge configurations and gives an infinite series of perturbative link invariants. Witten derives
information about the values of the invariants non-perturbatively using ingenious arguments, and
in some cases the link invariants can be calculated recursively using the so called skein relations.

2. WZW action and topological QFT

G2 connections are pure gauge whereas for C-S model only classical solutions are pure gauge.
The following argument strengthens the belief that the difficulty is only apparent.

1. Classical field equations dA + [A, A] = 0 state that A are pure gauge. This condition holds
true in the functional integral approach in the sense that the vacuum expectation value
for the first variation of action vanishes. In the Hamiltonian quantization the pure gauge
property should hold true in a quantal sense.

2. The moduli space for the pure gauge connections is parameterized by the holonomies over the
homotopically non-trivial curves of X3. This space corresponds to the space of highest weight
states for the Wess-Zumino-Witten model, which is conformal field theory at the boundaries
of X3. The dynamical variable is G-valued conformal field g(x), and WZW action consists
of kinetic terms at the boundaries of 3-manifold and topological interior term identifiable as
a Chern-Simons term for a pure gauge field defined by g(x).

The functional averages of Wilson loops can be expressed in terms of correlation functions of a
conformal field theory based on Wess-Zumino-Witten action having G as a target space. The
flatness of quantized connections is indeed consistent with the fact that quantum equations
of motion state the flatness of the connection in case of Chern-Simons action. Physical
intuition suggests that vacuum expectation values for Wilson loops correspond to ”thermal”
expectation values for the WZW model defined by WZW-action in the sub-space of the state
space defined by highest weight vectors of the unitary representations of corresponding Kac-
Moody group and identifiable as the moduli space of flat G connections. Note that effective
2-dimensionality is realized now in topological sense.

3. Only pure gauge connections are needed WZW model. The field equations associated with
WZW action imply that g at 2-D boundaries is of form gl(z)g−1

r (z) in complex coordinates.

3. Could topological quantum field theory give information about physics?
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Quantum-classical correspondence suggest also a more real-physics related approach to topo-
logical quantum field theory.

1. By previous arguments one expects that the functional integral average for the product of
Wilson loops using Chern-Simons action should be replaced with a functional average using
WZW action with quantized g and that links are replaced with generalized braids with the
ends of the braids at incoming and outgoing partonic boundary components or more general
branched braids associated with Feynman diagrams. The lines of braid are replaced with
strings/ribbons as is done also in TQFT:s in order to describe rigorously self linkage.

2. The lack of a rigorous definition of the functional integral is a problematic aspect of topo-
logical quantum field theories. Since physical states correspond to G2 valued chiral fields,
one might hope that the functional expectation value using WZW action could be translated
to average over physical states. The degeneracy factor multiplying the product of Wilson
loops for given values of moduli would be the number of physical states consistent with the
3-topology and the values of moduli. The outcome would be automatically a topological and
conformal invariant.

3. If these topological invariants are same as deduced by indirect arguments for G2 Chern-
Simons action, they would give a valuable information about the degeneracies of physical
states with given values of G2 moduli and fixed 3-topology. The correlation functions of G2

WZW model might also define a natural starting point for a perturbative approach to the
dynamics in non-topological degrees of freedom.

4. HO − H duality forces to ask whether the ground states of G2 Kac-Moody representa-
tions could be in 1-1 correspondence with the ground states of the representations of super-
canonical and super Kac-Moody algebra. States in G2 representations are labelled by color
quantum numbers so that the correspondence is not excluded. If G2 degrees of freedom
correspond to zero modes this duality could be interpreted in terms of duality between quan-
tum fluctuating degrees of freedom and zero modes representing the corresponding classical
variables.

5.3.3 G2/SU(3) coset theory and QCD

Besides WZW models so called minimal models are of special practical significance since they are
unitary, the number of the primary fields is finite for them, and the correlation functions satisfy an
infinite number of differential equations and are calculable. WZW models define minimal models
via coset construction [56]. G2/SU(3) coset model is for obvious physical reasons of a special
interest now.

The G/H coset construction for a WZW model based on group G means averaging over H
degrees of freedom by introducing an action term associated with H gauge field and functionally
integrating over these degrees of freedom [56]. The correlation functions can be constructed ex-
actly. At the level of Virasoro algebra it means the construction of Virasoro algebra generators as
differences Ln(G)− Ln(H). In the special case G = H a topological field theory results.

At the level of highest level representations the coset construction means following.

1. The highest weight representations Hg
λ for G can be decomposed to the HW representations

Hh
λ of H as

Hg
λ = Hλ

λ′ ⊗Hh
λ′ . (55)
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In this decomposition Hλ
λ′ is so called branching space, whose dimension tells how many

times the HW representation λ′ of H occurs in the HW representation λ of G the dimension.
One can wonder whether the branching spaces for G2/SU(3) coset model could allow an
identification in terms to electro-weak degrees of freedom. This is not the case since the
branching spaces turn out to be one-dimensional.

2. The physical states of the coset theory are annihilated by the Kac-Moody generators JH,a
n ,

n > 0, of H

JH,a
n |v〉 = 0 , n > 0 . (56)

This means that only the finite-dimensional representations of H defined by the highest
weighs of H appearing in the decomposition remain in the spectrum. These conditions
are equivalent with the conditions stating local SU(3) gauge invariance so that the natural
question is whether G2/SU(3) coset theory is only a topological field theory in SU(3) degrees
of freedom or whether the coset model is forced physically instead of the full WZW theory.

For the latter option the number theoretical interpretation for QCD would be that SU(3) leaving
invariant the choice of the preferred octonionic imaginary unit e1 acts as a gauge group. Further-
more, it is S6 = G2/SU(3) which codes for the choice of the preferred imaginary octonionic unit
e1 so that G2/SU(3) coset model is indeed natural. This also means that SU(3) WZW model for
which primary fields correspond to singlet, triplet and anti-triplet is not acceptable.

The condition c < 1 fixes the value of k(SU(3)) to k(SU(3)) = 1 and the minimal model in
question would have

c = c(G2, k = 1)− c(SU(3), k = 1) =
4
5

. (57)

c = 4/5 corresponds to a rational conformal field theory with 20 primary fields on basis of Kac
formula. The number of primary fields reduces to 12 for three-state Potts model [57], which has
been proposed as a model for 2+1-dimensional QCD [58]. For c = 4/5 the Virasoro algebra
represented by quadratic color Casimir extends to W3 algebra containing third order color Casimir
as a primary field of conformal weight ∆ = 3 [59]. G2/SU(3) coset theory does not however
reduce to this model as the comparison of conformal weights demonstrates (see Appendix A).
From (c(G2, 14) = 4, c(G2, 7) = 11/6) and c(SU(3), 8) = 3, c(SU(3), 3) = 4/3) the spectrum of
conformal weights is (0, 11/30, 1/30, 1/30) for k(SU(3)) = 1. Note that the difference between
singlet and triplet conformal weights is 1/3.

The beauty of this approach is that QCD might be replaced with an exactly solvable con-
formal field theory allowing also to deduce how correlation functions change in hyper-octonion
analytic transformations affecting space-time surface. There are however also objections against
this picture.

1. The basic objection is that G2 Kac-Moody algebra contains triplet and anti-triplet gen-
erators and triplet generators commute to anti-triplet. It is hard to imagine any sensible
physical interpretation for these lepto-quark generators, whose commutation relations break
the conservation of lepton and quark number.

The point is however that triplet generators affect e1, and thus S6 coordinates and also the
SU(3) subgroup acting as isotropy group changes. Thus correlation functions involving these
currents are not physically meaningful. Indeed, in G/H coset theory only the H Kac-Moody
currents appear naturally in correlation functions since the construction involves functional
integral only over H connections [56].
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2. If 14-dimensional adjoint representation would appear as primary field, also 3 and 3 lepto-
quark like states for which baryon and lepton number are not conserved would appear in the
spectrum. The choice k = 1 provides however a unique manner to circumvent this difficulty.
Integrability condition for the highest weight representations allows for a given value of k
only the highest weights λR satisfying Tr(φλR) ≤ k, where φ is the highest root for Lie-
algebra. Since the highest root has length squared 2, adjoint representation is not possible
as highest weight representation for k = 1 WZW model, and the primary fields of G2 model
are singlet and 7-plet corresponding to the hyper-octonionic spinor field and defining in an
obvious manner the primary fields 1 + 3 + 3 of G2/SU(3) coset model. Fusion rules for 1⊕ 7
correspond to octonionic multiplication. The absence of G2 gluons saves from lepto-quark
like bosons, and the absence of SU(3) gluons can be interpreted as HO counterpart for the
fact that all particles, in particular gluons, can be regarded bound states of fermions and
anti-fermions in TGD Universe.

This picture conforms also with the claims that 3+3 part of G2 algebra does not allow vertex
operator construction whereas SU(3) allows the construction in terms of two free bosonic
fields. These fields would naturally correspond to the two X4 directions transversal to the
string orbit defined by 1 and e1. One could say that strings in X4 are able to represent color
Kac-Moody algebra and that SU(3) is inherent to 4-dimensional space-time.

3. The fourth objection is that conformal field theory correlation functions obeying simple scal-
ing laws are not consistent with the exponentially decreasing correlation functions suggested
by color confinement. A resolution of the paradox could be based on the role of classical
gravitation. At light-like causal determinants the time-like component gtt of the induced met-
ric vanishes meaning that classical gravitational field is very strong. Hence also the normal
component gnn of the induced metric is expected to become very large so that hadron would
look like the interior of black hole. A finite X4 proper time for reaching the outer boundary
of the hadronic surface can correspond to a very long M4 time and the finite M4 distance
from the boundary can mean very long distance along hadronic space-time surface. Hence
quarks and gluons can behave as almost free particles when viewed from hadronic space-
time sheet but look confined when seen from imbedding space. If the hyper-quaternionic
coordinates appearing in the correlation functions correspond to internal coordinate of the
space-time surface, the correlation functions when expressed in terms of M4 coordinates can
look confining.

5.4 G2 is very special

It seems that G2 is exceptional from the point of view of vertex operator construction and that
this could allow to understand how TGD relates to bosonic string models and super-string models.

5.4.1 Does vertex operator construction exist for G2?

G2 is the only Lie group for which the ratio of the squares of long and short roots is 3. This
makes it unique among Lie groups. The following observations are from the article of David Olive
reporting the construction of vertex operators for non-simply laced Kac-Moody algebras [47].

1. For the simply-laced Lie algebras Ar (su(r + 1)), Dr (so(2r)), E6, E7, and E8 level k = 1
representations involve the tachyon emission vertex of the bosonic string theory, and the
vertices for all states of the theory generate a Lorentzian algebra of rank 26 based on the
unique self-dual even lattice in 26 Lorentzian dimensions.

2. For non-simply laced algebras of type Br (so(2r + 1)), Cr (sp(r)), F4 for which the ratio of
long roots to short roots equals to 2, the construction of the vertex operators relates to RNS
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fermionic string theory with critical dimension 10. The corresponding string theory involves
tachyons with mass squared equal to both -2 and -1 corresponding to the two root lengths.
The first tachyon decouples from the physical theory although its Regge recurrences occur.
Second tachyon decouples in the space-time super-symmetric version of the theory [47, 48].
The construction for these algebras requires the multiplication of the bosonic operators of
conformal weight 1/2 (corresponding to roots of length 1) with ”fermionic” operators of
conformal weight 1/2. The multiplication rules of these fields are fixed from the Kac-Moody
algebra relations and there is an interesting connection with the classical division algebras.

3. G2 is a completely exceptional Lie group since the ratio of lengths squared for long and
short roots equals to 3. The obvious question is whether G2 corresponds to TGD and its
reduction to hyper-octonionic string model while other groups would correspond to bosonic
and super-string models.

Although [47] does not give the explicit construction of the G2 vertex operators (it is excluded
”for simplicity”), it is clear from the construction of the vertex operators for the other non-
simply laced algebras that the construction, if it exists as claimed, can be performed in two parts.
The easy part corresponds to the ordinary simply-laced construction for SU(3) ⊂ G2 having the
same Cartan subalgebra as G2. The remaining generators of G2 transform as 3 + 3 under SU(3)
and the commutators are of form [3, 3] = 3, [3, 3] = 3 and [3, 3] = 8. If the vertex operator
representation exists, triplet and anti-triplet fields are obtained by multiplying bosonic operators
of conformal weight 1/3 with ”fermionic” operators having conformal weight 2/3. It seems the
anti-commutators of fermionic operators must obey multiplication table of octonionic units in 3+3
if the representation exists.

In [55] it is however argued that the vertex operator construction does not work for G2. Ac-
cording to [55], for simply laced Lie algebras the representation of level one vertex operators is
possible for all primary fields of WZW model. For non-simply laced Lie algebras Br and Cr only
single primary field multiplet of WZW model allows k = 1 vertex operator representation, whereas
the primary fields of G2 labelling the highest weight states of WZW model with weights c2

λ/y
(c2

λ denotes the value of Casimir operator) and F4 WZW models do not allow vertex operator
representations. Since the primary fields of WZW model correspond to chiral and anti-chiral parts
of g and to chiral and anti-chiral Kac- Moody generators, the statement contradicts the claim of
[47] that vertex operator construction for G2 exists. Be as it may, it seems that G2 WZW model
differs radically from that associated with simply laced Lie algebras.

5.4.2 G2 as the minimal option for topological quantum computation

G2 is also the minimal choice from the point of view of quantum computation [60, 50, E9].

1. The quantum group parameter q associated with the Kac-Moody representation [E9] is de-
termined as q = exp(i2π/y), where y = k + h is the sum of the dual Coxeter number h and
Kac-Moody central charge k. Recall that the level of representation is defined as x = 2k/ψ2,
where ψ2 = 2 is length of the long roots of Lie algebra of G of Kac-Moody representation.
x = 1 is the lowest non-trivial value of x.

2. From the point of view of topological quantum computation [60, 50, E9] the smallest value
of y allowing braid representation of all possible quantum computations is y = 5. In this
case the phase associated with quantum group parameter q = exp(i2π/y) relates very closely
to Golden Mean. h(SU(2)) = 2 requires k = 3 in order to have y = 5. On the other
hand, h(G2) = 4 means that the lowest level Kac-Moody representation with x = k = 1
gives y = 5. Hence G2 gives rise to a minimal Kac-Moody representation allowing the
representative power needed by topological quantum computation. Note that h = 4 is true
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also for SO(6) = SU(4) with dimension d = 15 and Sp(3) with dimension d = 21. All these
groups have rank r = 3 whereas G2 has rank r = 2 and dimension d = 14 so that G2 is the
minimal choice from the point of view of topological quantum computation.

What is intriguing that the quantum group phase exp(i2π/5) appears in the helical structure of
DNA proposed in [E9] to act as a topological quantum computer.

One could see these observations as signals for the facts that super strings are not quite enough,
and that 8-D WZW strings with pure gauge G2 gauge potential coupled to hyper-octonionic spinor
fields and coding for the space-time surfaces via Kähler calibrations provides the royal road to a
unique TOE.

6 HO −H duality and other dualities

During last half year it has become clear that TGD involves an entire web of dualities. Although
the picture is far from being crystal clear as yet, general patterns can be already distinguished
from the unavoidable cognitive mist surrounding every new idea. These dualities have direct
counterparts in hadron physics and allow a fresh view about the relationship between perturbative
and non-perturbative QCD, and in fact predict that QCD is quite not correct theory. Spin crisis
of proton is one of the phenomena difficult to understand in QCD and finds an elegant explanation
in terms of HO −H duality.

6.1 How do HO − H duality, HQ − coHQ duality and electric magnetic
duality relate?

The key question is what HO−H duality and other dualities really mean and how they relate to
HQ− coHQ duality and electric magnetic dualities.

1. Does HQ-coHQ pairing define a duality? If HQ-coHQ relation defines a duality, the space-
time surface associated with a given 3-surface would be different in the dually related pictures.
Or should one adopt a weaker interpretation in which HQ − coHQ duality would be more
analogous to a map identifying two coordinate patches of the configuration space as a man-
ifold in the region in which they overlap? Only in this region duality would be exact and
there might be also 3-surfaces for which the duality would not hold true and they would cor-
respond to coordinate singularities at CH level. At space-time level vacuum extremals with
vanishing Kähler fields and CP2 type extremals would correspond to these two extremes.

2. Do HO and H pictures provide two completely equivalent descriptions of physics or are also
these descriptions analogous to different coordinate patches? Is HO −H duality equivalent
with HQ − coHQ duality? One might argue that since hyper-octonionic spinor fields are
needed to define both HQ and coHQ 4-surfaces, this cannot be the case. There are however
indications that CH description could be more convenient in coHQ picture (partons) and
CHO description in HQ picture (string orbits).

3. The possibility of electric-magnetic duality at configuration space level was conjectured al-
ready more than decade ago, and was inspired by the observation that configuration space
Hamiltonians could be defined in terms of either generalized magnetic or electric fluxes
[B2, B3]. This duality could naturally correspond to HQ − coHQ duality. Magnetic fluxes
are very natural for the flux Hamiltonians defined by the space-like partonic 2-surfaces in H
picture, whereas electric fluxes (actually magnetic fluxes for time-like 2-surfaces) are natu-
ral for the Hamiltonians associated with time-like string orbits in HO picture. The Kähler
functions associated with Kähler metrics defined by these representations would correspond
to Kähler function and its dual.
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6.1.1 HQ− coHQ duality at the level of configuration space

There are two options concerning the definition of the dual Kähler function in HQ−coHQ duality.

1. Define Kähler function in terms of Kähler calibration using local maximum of LK instead
of minimum. For this option the absolute value of the contribution from a region having
fixed sign of Kähler action would be maximized and the option would maximize contrasts
and in this sense would be favored by quantum criticality. The strongest pro is that the
value of CP2 Kähler action appears in the expression for the gravitational coupling strength
and p-adic evolution for the Kähler coupling strength. The HQ and coHQ pictures would
correspond to dove and hawk view about Universe.

2. Replace Kähler action by its dual defined by the normal projection of the induced Kähler
form to the normal space associated with given hyper- quaternionic plane. In this case
both HQ and coHQ views would represent dove view about Universe and CP2 action would
disappear from the theory as a fundamental parameter. This suggests that this option is not
correct. Despite this the explicit definition of the dual of Kähler action deserves a separate
discussion.

The dual of the Kähler action would be obtained by replacing the induced CP2 Kähler form Jαβ

with its projection JN
kl to the normal space of the space-time surface. This means a contraction

with the projector P to the normal space

JN = PJP , P = h−∇h · ∇h , (58)

where h denotes the imbedding space metric and ∇h · ∇h denotes the H- tensor defined by the
space-time inner products of gradients of H coordinates hk. More explicitly,

JN
kl = P r

k P s
l Jrs ,

P kl = hkl − gµν∂µhk∂νhl . (59)

The dual action would be defined by the dual action density

L = k1J
N
kl J

kl
N

√
g ,

k1 =
1

16πα̂K
(60)

integrated over the space-time surface.
For both choices of the dual of Kähler action the dual Kähler coupling α̂K appears as a free

parameter. The identification of α̂K is not quite obvious. The standard form of electric-magnetic
duality corresponding to the replacement g → 1/g is not sensible in the recent case. This leaves
two options.

1. The simplest option would be α̂K = αK so that the different dynamics defined by the dual
Kähler action would be responsible for the strong–weak duality. This option is not terribly
attractive but cannot be excluded.

2. The identification suggested by p-adic length scale hypothesis and p ↔ k duality of long and
short p-adic length scales would be α̂K(k) = αK(p) where p ' 2k labels the space-time sheet
at which CP2 type extremals has suffered topological condensation. This identification would
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reduce the value of coupling strength and thus also the importance of quantum fluctuations
in HO picture at short length scale limit. This identification would suggests that CP2 type
extremal resp. the space-time sheet of size of order Compton length at which it is topolog-
ically condensed are optimally described as co-hyper-quaternionic resp. hyper-quaternionic
surface and that the transition from the description to its dual corresponds to the exchange
of these surfaces.

6.1.2 HO −H duality at the level of configuration space

An interesting challenge is to translate HO−H duality to the level of configuration space geometry
and spinor structure.

1. In H picture CH Hamiltonians correspond to Hamiltonians of δM4
+×CP2 in representations

of SO(3)× SU(3) whereas spin and electro-weak spin correspond to spin degrees of freedom
associated with complexified gamma matrices acting as super-generators.

2. In HO picture CH is replaced with what might be called CHO. The guess is that also
CHO allows Kähler and symplectic structures. CHO Hamiltonians cannot correspond to
Hamiltonians of E7 (imaginary hyper-octonions) since E7 has wrong dimension. 7-D light-
cone is in turn metrically a 6-sphere. If S6 does not allow complex structure as Chern’s
last theorem claims, it does not allow Kahler structure neither. Situation changes if one
considers δM4

+ × E4 metrically equivalent to S2 × E4, which certainly allows Kähler and
symplectic structures. This choice is of course perfectly natural and consistent with the view
that number theoretical compactification takes effectively E4 to CP2 by attaching to it a
2-sphere at infinity. SO(3) × SO(4) would assign to Hamiltonians spin and ew quantum
numbers. Color quantum numbers would correspond to spin degrees of freedom associated
with CHO gamma matrices acting also as super generators. H −HO duality could be also
interpreted as a super-symmetry permuting bosonic and fermionic degrees of freedom at the
level of configuration space.

The obvious question is what is the counterpart of configuration space Kähler function [B1] in
HO picture.

1. If HO−H duality is identified with HQ− coHQ duality the situation reduces to the HQ−
coHQ duality. It would however seem that the identification of these dualities is in conflict
with the fact that HO spinors are needed to define both HQ and coHQ pictures.

2. If the two dualities are not equivalent, the identification of CH and CHO Kähler functions
seems to be the most natural option, at least the simplest that one can imagine.

6.2 String-YM duality in TGD framework

Hyper-octonion spinor fields and corresponding G2 element correspond to an extremal of WZW
action plus Dirac action. If the previous arguments make sense, the extremization of Kähler
action is equivalent with that of the stringy action. It is perhaps too much to hope that Kähler
action is simply a function of WZW action, or even better, proportional to it. Be as it may, this
would guarantee the extremum property of Kähler action on basis of hyper-quaternionicity or its
co-property.

What gives rise to optimism is that the equivalence of WZW + Dirac action for HO strings with
classical color interaction represented by Kähler action (plus the modified Dirac action at light-like
causal determinants) conforms with the duality of string models with certain YM theories proposed
in M-theory context.
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6.3 HO −H duality and ew-color duality

The e(lectro)w(eak)-color duality associated with H − HO duality reflects the fact that in both
pictures the dynamics of single space-time surface can provide only a partial description of quantum
dynamics, and that configuration space level is needed in order to code all quantum numbers and
all interactions. The situation cries for a more precise formulation for the ew–color duality. The
sought for formulation can be expressed as a single concise statement.

In H (HO) picture spin and ew-spin (color) degrees freedom correspond to spin like quantum
numbers and color (ew) degrees of freedom to classical conserved charges.

6.3.1 Spin-like quantum numbers and conserved charges in H-picture

In H picture ew quantum numbers and spin are manifestly present whereas color quantum numbers
and interactions emerge as spin like quantum numbers only at configuration space level as does
also four-momentum via Kac-Moody representations. Classical color and Poincare charges are well
defined also in H picture. There is also a non-trivial interaction between color and ew degrees of
freedom since color transformations are accompanied by ew rotations in accordance with the fact
that U(2)ew can be mapped to a subgroup of SU(3) via the coset construction.

6.3.2 Spin-like quantum numbers and conserved charges in HO-picture

Hyper-octonion HO spinors decompose to representations of color group whereas H spinors de-
compose to the representations of ew and Lorentz group. Hence for HO picture color is manifestly
present as spin degrees of freedom but ew spin and spin are absent.

By ew-color duality at space-time level ew and spin charges should somehow emerge also in
HO picture as classical conserved quantities. The first observation is that the automorphism
group G2 corresponds to 2 conserved commuting charges. Translating H picture directly to HO
level, this would mean that the classical conserved charges associated with WZW + Dirac action
have identification as ew charges. Also now a non-trivial relation between electro-weak and color
quantum numbers is involved.

There are also symmetries not respecting hyper-octonion real-analyticity and analogous to
those affecting the moduli characterizing complex structure. SO(7) leaves the spatial part of the
hyper-octonionic norm invariant and this extends the number of conserved charges to 3 bringing in
spin. The full isometry group of the hyper-octonionic norm is SO(7, 1) so that also Lorentz boost
would be included to the Cartan algebra.

Also translations are symmetries of HO picture since the shift of the origin gives rise to a new
solution family which is however not hyper-octonion analytic in the original coordinate system.
Four- momentum should emerge at quantum level via Kac-Moody type realization also now.

The correspondences M4×SO(7, 1) ↔ P ×SU(3) and SU(3) ↔ U(2)ew code for the ew–color
duality. Interestingly, the four M4 coordinates depending X4 coordinates define a local Kac-Moody
algebra identifiable in terms of the Cartan algebra of SO(7, 1) and extendable by k = 1 vertex
operator construction to a representation of SO(7, 1) Kac-Moody algebra. On the other hand,
the Euclidian stringy degrees of freedom in M4 give rise to SU(3) Kac Moody algebra and to
SU(3)/U(2) WZW model serving as a candidate for a model of ew interactions. A very tight web
of correspondences between various symmetries is involved.

6.3.3 HO and H pictures: summary

To sum up, the general picture is following.

1. HO −H duality corresponds to two kinds of conformal symmetries: hyper-octonionic con-
formal invariance and the conformal invariance associated with the light-like causal determi-
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nants. Both partonic and string like descriptions are possible and correspond to HQ−coHQ
duality.

2. HO picture corresponds to G2/SU(3) coset WZW theory and naturally to QCD. Color is spin
like quantum number and spin and ew spin are orbital quantum numbers at configuration
space level.

3. H picture is analogous to SU(3)/U(2) coset theory. H spinor fields are the counterparts of
hyper-octonionic spinor fields. The identification of space-time as surface in M4×CP2 is the
counterpart of description in terms of SU(3)/U(2) WZW model. In this picture spin and ew
spin are spin like quantum numbers and color is at configuration space level. Both partonic
and stringy descriptions are possible.

6.4 HQ − coHQ-duality, parton-string duality, and generalized Uncer-
tainty Principle

HQ − coHQ duality relates descriptions based on partonic and string like 2-surfaces, and since
HO −H duality is different duality, there are four different combinations of these pictures. HQ
picture is natural at long length scales when space-time looks like a deformed piece of M4, whereas
coHQ picture is natural at short length scales when CP2 type extremals dominate. At short
(long) length scales HQ−HO (coHQ−H) combination looks most natural since fluctuations in
configuration space degrees of freedom are minimized and field theory is expected to give reasonable
description.

Hyper-quaternionic 4-surfaces can contain real unit and the preferred imaginary hyper-octonionic
unit at each point and thus also the string orbit but this is not true in the co-hyper-quaternionic
case. Thus string orbits and partonic 2-surfaces belong to dual 4-surfaces intersecting each other
at a discrete set of points in the generic case. Obviously a generalization of Uncertainty Principle
generalizing ordinary q-p duality to HQ − coHQ duality holds true and HQ and coHQ descrip-
tions relate like function and its Fourier transform. In fact, in the ideal case of foliation each point
of a coHQ four-surface corresponds to a HQ four-surface and vice versa, and a kind of Fourier
transform assigning to a HQ 4-surface quantum superposition of coHQ surfaces (and vice versa)
can be defined.

6.5 Ew-color duality, duality of long and short p-adic length scales, and
(HO, coHQ)− (H,HQ) duality

The first formulation [F5] for ew-color duality was in terms of p-adic length scale hypothesis
selecting the primes p ' 2k, k positive integer, preferably prime or power of prime, as preferred
p-adic length scales. Lp ∝ √

p corresponds to the p-adic length scale defining the size of the
space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the

wormhole contacts associated with the CP2 type extremal and CP2 size is the natural length unit
now. Obviously this duality would naturally correspond to HQ− coHQ duality.

The proposal was that QCD type description based on quarks and gluons corresponds to a
description in the ultra-short length scale Lk and the description in terms of hadrons possessing
only electro-weak quantum numbers and spin corresponds to the hadronic length scale Lp. The
order of magnitude for αs is predicted correctly directly from the fact that it is proportional to
αK and as U(1) coupling increases towards short p-adic length scales in a manner predicted by
heuristic arguments assuming that gravitational constant does not run appreciably as a function
of p-adic length scale.
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The duality of p-adic length scales can be interpreted in terms of HQ−coHQ duality. Combin-
ing it with electro-weak-color duality, (HO, coHQ) and (H,HQ) pictures emerge as dual pictures.
HO− coHQ picture describing color as a spin like quantum number is more appropriate near CP2

length scale whereas H − HQ picture describing color classically (as in color flux tube models)
is more appropriate in hadronic length scales. Perturbative–non-perturbative QCD duality would
thus correspond to (HO, coHQ) − (H, HQ) duality. Strictly speaking, non-perturbative QCD in
standard sense is of course a meaningless notion in TGD framework.

These arguments led first to the identification of the HO − H and HQ − coHQ dualities.
Although it seems practical to use (HO, coHQ) and (H,HQ) pictures implying 1-1 correlation
between the dualities, the two dualities are definitely not equivalent.

6.6 Color confinement and its dual as limits when configuration space
degrees of freedom begin to dominate

The description of duality at the configuration space level can be applied to gain a view about
color confinement and its dual for electro-weak interactions at short distance limit. The correct
prediction is that SO(4) should appear as dynamical symmetry group of low energy hadron physics.

There are two basic types of vacuum extremals: CP2 type extremals representing elementary
particles and vacuum extremals having CP2 projection which is at most 2-dimensional Lagrange
manifold and representing say hadron. It is not surprising that HO-H duality can be interpreted
in terms of these vacuum extremals and they provide a more precise view about what happens at
the limits when either CH or CHO degrees of freedom begin to dominate over space-time degrees
of freedom describable ordinary quantum field theory.

6.6.1 Short distance limit

Consider first the short distance limit at which electro-weak confinement is expected and HO
picture becomes more appropriate.

1. Ew-color duality would suggests that at the limit of short distances something analogous to
color confinement occurs for electro-weak interactions. Also the large value of U(1) coupling
supports this expectation. The vacuum property of CP2 type extremals means that induced
spinor fields become vacuum spinor fields with identically vanishing Dirac action. Therefore
these spinor fields effectively disappear at space-time level for the maxima of Kähler func-
tion, and contribute only via quantum fluctuations, which correspond to configuration space
dynamics. Color partial waves are left as a genuine configuration space degree of freedom and
the expectation is that only the lowest color partial waves corresponding to singlet and triplet
remain and become spin like degrees of freedom analogous to QCD color in HO picture.

2. Duality suggests SO(4) confinement in E4 degrees of freedom at this limit. The nearly
vacuum property should allow very large fluctuations of the ordinary fermion and anti-
fermion numbers at the limit when the fermions become pure vacuons for which creation and
annihilation operators reduce to anti-commuting Grassmann numbers. In HO picture this
would mean that high SO(4) partial waves in E4 are possible for composites although net ew
quantum numbers vanish. Hence electro-weak spins become analogous to classical angular
momentum at this limit.

6.6.2 Long distance limit

Consider next color confinement at the long length scale limit as a dual of this picture.
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1. In the case of color interactions very high color partial waves for quarks and gluons appear
at the confinement limit. For instance, vacuum extremals representable as maps M4 → CP2

identifiable as hadronic space-time sheets correspond to color confinement limit. Strong
fluctuations due to high color partial waves in CH appear, and correspond in CHO picture
to the presence of very high colored hyper-octonionic fermion and anti-fermion numbers.
Since configuration space degrees of freedom begin to dominate, color confinement limit
transcends the descriptive power of QCD just as high energy limit transcends the descriptive
power of standard model of electro-weak interactions.

2. The success of SO(4) sigma model in the description of low lying hadrons could directly
relate to the fact that this group labels also the E4 Hamiltonians in HO picture. SO(4)
quantum numbers can be identified as right and left handed electro-weak isospin coinciding
with strong isospin for lowest quarks.

3. Pion and sigma boson form the components of E4 valued vector field or equivalently collection
of four E4 Hamiltonians corresponding to spherical E4 coordinates. Pion corresponds to S3

valued unit vector field with charge states of pion identifiable as three Hamiltonians defined
by the coordinate components. Sigma is mapped to the Hamiltonian defined by the E4 radial
coordinate. Excited mesons corresponding to more complex Hamiltonians are predicted. The
map of electro-weak spin like degrees of freedom to E4 degrees of freedom maps quark-anti-
quark pairs to E4 coordinates.

4. Baryons should be analogous to color partial waves of quarks, and just as CP2 spinors allow
at CH level color triplet partial waves also hyper-octonionic fermions should allow at CHO
level SO(4) partial waves transforming as doublets under SU(2)L or SU(2)R.

5. Family replication phenomenon is described in the same manner in both cases so that quan-
tum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass calcula-
tions allowing fractally scaled up versions of various quarks allow to replace Gell-Mann mass
formula with highly successful predictions for hadron masses [F4].

6. Ordinary fermion numbers do not fluctuate at the color confinement limit. That this does
not occur must relate to the facts that modified Dirac action relates by super-symmetry to
Kähler action and the variations of Kähler action vanish up to third order around canonically
embedded M4 whereas for the CP2 type extremals the situation is completely different. The
absence of fluctuations in ew spin degrees of freedom suggests the possibility of describing low
energy hadrons using simple valence quark model without quark color with quark and gluon
sea modelling the presence hyper-octonionic quark pairs. The problems due to statistics
might be resolved by anyonic statistic possible for 2-D partonic surfaces. At the asymptotic
freedom limit hyper-octonionic sea becomes less and less important.

6.6.3 Proton spin crisis as a signature of hyper-octonionic colored quarks?

Hyper-octonionic quarks carry neither ordinary nor electro-weak spin since these quantum numbers
correspond to orbital quantum numbers in HO. Hence in the ideal colored quark description the
contribution of quarks to both spin and electro-weak spin of proton should vanish whereas in
H quark description quarks should give proton spin. Obviously, these descriptions correspond
to colored current quark description and to a static color singlet quark descriptions possible for
anyonic statistics [61, E9]. This prediction would sound crazy unless the essence of proton spin
crisis were just the finding that the contribution of quarks to proton spin is small [62, 63, 64, 65].

Spin-statistics paradox is avoided if configuration space degrees of freedom are taken into ac-
count. Quantum-classical correspondence, if taken at extreme, would suggest that configuration
space degrees of freedom might have some kind of space-time correlate. The 2-dimensionality of
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stringy and partonic surfaces suggests that anyons might provide this correlate. In HO picture
spin-statistics paradox at space-time level would be avoided by the 2-dimensionality of partonic
surfaces allowing to have braid representations of the rotation group and colored quarks can have
half-odd integer valued anyonic spin and electro-weak spin.

A possible physical mechanism transforming H quarks without color spin but with ew- and or-
dinary spin to HO quarks having only color spin is following. Anyonic and ordinary contributions
to ew- and ordinary spin of H quark cancel each other and color spin is generated anyonically.
In TGD framework anyons are associated with punctures assignable to the thin flux threads con-
necting partonic 2-surfaces and these punctures appear always as pairs with the ends of thread
carrying opposite anyonic quantum numbers. OH fermions would correspond to fermion plus the
second end of the anyon thread.

In H picture the approach to confinement means large fluctuations also in SO(3) degrees of
freedom and the emergence of Regge trajectories. In HO picture the angular momentum of hadron
would be due the angular momentum of a large number of colored quark pairs.

A mechanism resolving not only proton spin crisis but allowing also to understand non-
perturbative aspects of hadron physics will be discussed in [F4, F5]. In this framework also super-
canonical degrees of freedom contribute to hadron spin and the average spin of nucleonic quark
vanishes due to the non-trivial Glebsh-Gordan coupling between proton spin and super-canonical
spin. Unlike the more ”philosophical” explanation based on OH-O duality, this mechanism is
rather predictive: for instance, hadron masses are understood with accuracy better than one per
cent.

6.6.4 Summary

It seems that HO−H duality involves an entire web of dualities suggested by the general structure
of TGD. Electric-magnetic duality; duality of hyper-quaternionic and co-hyper-quaternionic 4-
surfaces; 7-3 duality stating that either space-like 3-surfaces in the intersections of space-time
surface with light-like 7-surfaces δM4± × CP2 or light-like 3-surfaces X3

l at which X4 metric
becomes degenerate can be taken as causal determinants, and parton-string duality which string
theorist would probably call closed-open string duality, would reduce to the same fundamental
duality. These dualities correspond to physical dualities such as ew-color duality described above,
p ' 2k ↔ k duality of long and short p-adic length scales, duality of current quarks and static
quarks, and duality of hadron and quark level descriptions.

HO−H duality leads to concrete predictions. Some of them are already verified (SO(4) chiral
symmetry of low energy hadron physics and explanation of proton spin crisis). Some of them
might be testable (colored quarks should not contribute to right and left electro-weak isospin of
hadrons). The most important prediction is that both standard model of electro-weak interactions
and QCD are in a precisely defined sense wrong theories. One might hope that this might allow
to develop an experimental arrangements proving or disproving this prediction.

Spin-statistics paradox was the crucial observation leading to the introduction of quark color.
The 2-dimensionality of partonic and stringy surfaces allowing anyonic statistics, or probably
equivalently, the presence of configuration space degrees of freedom, allows to circumvent the spin-
statistics paradox otherwise implied by the fact that H spinors do not carry color as spin like
quantum number and HO spinors do not carry spin and ew spin.

7 A more precise view about HO−H and HQ− coHQ dual-
ities

There are many open questions related to the proposed dualities and the requirement of overall
internal consistency and complete symmetry between H and HO pictures gives hopes of achieving
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a global view about the situation. The understanding of HO−H dualities in terms of momentum
and position representations in the cotangent bundle of configuration space reduces the duality to
wave-particle duality in infinite-dimensional context. This picture generalizes also to the case of
strings and allows to understand what spontaneous compactification means if the notion of stringy
configuration space is introduced.

7.1 CHO metric and spinor structure

Configuration space metric is defined by the flux Hamiltonian basis of the configuration space
in one-one correspondence with Hamiltonians of δM4

± × CP2 in case of CH and δM4
± × E4 in

case of CHO [B2, B3]. E4 has a natural Kähler structure and the most natural assumption is
that E4 Kähler form defines symplectic and Kähler structure of CHO. CHO Hamiltonians would
be defined by Hamiltonians in δM4

± × E4 coordinates belonging in irreducible representations of
SO(3, 1)× SO(4).

Also CHO should have spinor structure with gamma matrices acting as super generators.
Hyper-octonionic spinor fields with real Laurent coefficients cannot be used to construct super
generators and second quantization is needed. The only consistent interpretation is that hyper-
octonionic spinor fields correspond to zero modes just as solutions of modified Dirac equation
correspond to zero modes.

HO−H duality requires that also second quantized HO spinor fields have 1+1+3+3 decom-
position identifiable naturally in terms leptons, quarks and corresponding anti-fermions. What
looks strange is that HO spinor field contains components with both lepton and quark number as
well as components with opposite quark/lepton numbers. Conservation laws are however respected
since SU(3) does not transform these components to each other. In principle the coefficients of
second quantized spinor fields are complex numbers commuting with octonion units.

7.2 Can one interpret HO−H duality and HQ− coHQ duality as gener-
alizations of ordinary q-p duality?

It would be highly desirable to reduce the dualities to familiar notions of mathematical physics so
that they could be seen as predictions of TGD rather than hypothesis.

7.2.1 HO −H duality and cotangent bundle of CH

A possible interpretation for CHO−HO duality is in terms of ordinary q-p duality generalized to
geometric quantization at the level of the cotangent bundle of the configuration space. The points
of the fiber of cotangent bundle would be generalizations of canonical momenta. What would be
new that these canonical momenta would be representable as 4-surfaces in HO, and obtained by
assigning to each point of 4-surface of H a co-tangent vector in the fiber of cotangent bundle of H.

The infinite-dimensional generalization of wave-particle duality would allow to use either the
base space CH or CHO defining the fiber of cotangent bundle or more generally, Lagrange manifold
of the cotangent bundle. If this interpretation is correct, any Lagrange manifold of cotangent bundle
is a priori admissible apart from constraints posed by infinite-dimensional existence. Symmetries
of course pose natural constraints to the Lagrange manifolds.

Furthermore, covariant gamma matrices are in one-one correspondence with the cotangent
space basis so that the permutation of spin and orbital degrees of freedom is consistent with q-p
permutation.

A concrete realization of HO−H duality would be in terms of the conserved currents expressible
using the canonical momentum densities associated with the Kähler action. For any action density
L the canonical momentum densities πk = ∂L/∂th

k, where t is some time coordinate, define
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counterparts of canonical momenta. As functions of X4 coordinates πk(x) indeed define a 4-
surface in T (H = M4 × CP2). The problem is the lack of general covariance at both space-time
and imbedding space level.

The symmetric space structure of CP2 allows to circumvent the problems at the level of imbed-
ding space level. The replacement of the canonical momentum densities by the conserved currents
of M4 translations and of four color isometries corresponding to the complement of Cartan sub-
algebra U(2) ⊂ SU(3) guarantees general coordinate invariance at the level of H.

General coordinate invariance can be achieved also at space-time level. The proportionality of
the isometry currents to

√
g spoils their vector field property: the problem is handled by dropping√

g out. The resulting coordinates transform like time components of space-time vector fields:
scalars are obtained by introducing a preferred time coordinate t. CH is a union of configuration
spaces CH±(m) assigned to H± = M4

±×CP2 with M4
± having its tip at point m ∈ M4, plus more

complex configuration spaces associated with the the unions and intersections of future and past
light cones. One can assign to CH±(m) a unique preferred time coordinate t as the light-cone
proper time a and use it in the definition of canonical momentum density.

This realization is physically natural since for vacuum extremals canonical momentum densities
vanish identically and dual space-time surface collapses to a point. Quite generally, the dimension
of the dual space-time surface is local and can vary in the range [0, 4]: perhaps one might speak
of TGD counterparts of branes.

7.2.2 HQ− coHQ duality as a generalization of q − p type duality

HQ − coHQ duality brings in mind the generalization of ordinary q − p duality associated with
cotangent bundle to a duality defined by the normal bundle of X4. This requires that space-time
dimension is half of the dimension of imbedding space. HQ − coHQ duality would thus permute
base and fiber of the normal bundle. What is new that points in the fiber of the normal bundle
would have representation as 4-surfaces of H. This is possible if the normal of 4-surface X4 is
identified as a map assigning to each point of X4 a vector in normal space mapped to point of
H somehow so that these points define a surface of H. If the CP2 part of the normal vector is
interpreted as a vector in the complement of U(2) Lie-algebra and exponentiated and projected
back to CP2 a surface in H results.

7.2.3 What is the physical interpretation of HQ− coHQ Fourier transform?

Fourier transform maps functions in base space of cotangent bundle to functions in the fiber of
cotangent bundle and both HO−H and HQ− coHQ dualities should correspond to a generalized
Fourier transform.

An interesting question is whether HQ − coHQ Fourier transform might have some deeper
interpretation. Consider a given HQ 4-surface X4 and its dual determined by Bohr quantization
mediating HQ− coHQ duality. These surfaces have a discrete set of common points in the generic
case and one might wonder whether this set of points could have interpretation as punctures
representing states created by completely localized (topological?) quantum fields in X4. The
simplest situation is that there exist for each point of X4 single coHQ surface going through it
and this surface intersects X4 in single point. The questions are following.

1. Is it possible to interpret elements of second quantized Fourier basis in X4 in terms of
functions in the space of 4-surfaces dual to X4 in this case?

2. What is the interpretation when multiple intersections are possible: do these represent in-
ternal degrees of freedom?

3. Could this interpretation give a geometric meaning for n-point functions of quantum fields?
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For the foliation of X4 by stringy 2-surfaces labelled by their partonic duals intersections appear,
and the interpretation of the intersection points as punctures representing completely localized
states created by conformal or topological quantum field is rather attractive. Also a connection
with the 2+2 intersection form of 4-dimensional cohomology playing a key role in the classification
of 4-manifolds is suggestive. If this were the case, the intersection form would allow to assign
(topological) particle number to space-time surface (or space-time sheet).

7.3 Further implications of HO −H duality

The improved understanding of HO−H duality leads to additional highly non-trivial conjectures.

7.3.1 Does the same 4-D points set represent both q and p(q)?

HO − H duality interpreted in terms of cotangent bundle of configuration space forces to ask
whether one should not replace Kähler action for M4 × CP2 (4-surfaces representing ”positions”)
with its counterpart for M4×E4 in HO picture (4-surfaces representing ”momenta”). This would
mean a map assigning to a given 4-surface in H its dual in HO. Kind of Bohr quantization would
be in question: to a given position of particle (4-surface in H) a unique momentum (4-surface in
HO would be assigned.

The idea that these two different 4-surfaces should to different point sets in HO and H does
not seem attractive, and the question is whether the same point-set X4 in HO represents both
CH point and CHO point (position q and momentum p(q)) and the differences come only from
the fact that the metric and Kähler form are induced from HO and H respectively. This would be
of course in spirit with the notion of HO−H duality and provide it with an additional beauty and
meaning. Also Lagrange manifolds applied in geometric quantization assign unique momentum to
given position and thus perform Bohr orbit quantization.

The duality in this strong sense raises several interesting questions.

1. Do vacuum extremals for HO Kähler action co-incide set-theoretically with those for H
Kähler action?

2. Is the value of Kähler function defined by the two Kähler actions same for a given 3-surface?

These two requirements imply that all 4-surfaces X4 ⊂ HO approach to vacuum extremals at large
distances from the origin and asymptotically have at most 2-D E4 and CP2 projections. These
surfaces need not of course have infinite size in HO.

Infinite primes have interpretation as Fock states and representation as 4-surfaces [E3]. The
hyper-octonionic building bricks of infinite primes allow a straightforward interpretation as com-
ponents of a quantized 8-momentum for a particle in HO and thus correspond to the momentum
representation of the theory.

7.3.2 Do both HO and H spinor fields define foliations?

Complete HO−H duality suggests that hyper-octonionic spinor fields should have analogs at the
level of H. Solutions of massless Dirac equation for H-spinors are the only reasonable candidates
for the counterparts of H spinor fields. These spinor fields should define in some natural manner
a map assigning to a point of H a point of HO. The natural guess is that M4 coordinates result
by canonical projection whereas E4 coordinates ek correspond to the currents ek = ΨΓk

CP2
Ψ. Ψ

is fixed apart from a local U(1) phase and the consistency condition would be that Ψ (which have
either quark or leptonic chirality) satisfies massless Dirac equation in H. If a superposition of
quark and lepton like currents is allowed, the changes of satisfying the condition are better. The
Kähler calibration for HO Kähler action should define same 4-surface in set theoretic sense as that
for H Kähler action.
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7.3.3 Are induced spinor fields restrictions of imbedding space spinor fields?

As already found, the strict HO−H duality supports the view that the induction to X4 makes sense
for both H and HO spinor fields, that the zero modes of these spinor fields satisfying massless
Dirac equation at the level of H (HO) and modified Dirac equation at the level of X4 ⊂ H
(X4 ⊂ HO) correspond to classical degrees of freedom, and that second quantized part defines the
gamma matrices of configuration space CH (CHO) acting as super-generators.

The introduction of imbedding space and space-time spinor fields as independent dynamical
degrees of freedom does not look a good idea and the simplest assumption is that the allowed
induced spinor fields or at least the zero modes for these spinor fields in the foliation correspond
to the restrictions of H and HO spinor fields. This would select only single zero mode from the
space of all allowed ones.

For the second quantized X4 spinor fields the representability as a restriction of second quan-
tized H spinor field would mean that the anti-commutators of H spinor fields are non-vanishing
at surfaces X4 rather than at 7-D surfaces as in ordinary quantization. This would resolve the
longstanding problem how to perform induction procedure for quantized H spinor fields without
producing fatal 7-D delta function singularities to the space-time integrals of anti-commutators of
the induced spinor fields.

If the Laurent coefficients of the zero mode spinor fields are Hermitian operators representing
observables characterizing quantum states this selection would realize quantum-classical correspon-
dence. Space-time surfaces would serve as representations of quantum states. This assumption is
however not absolutely essential and the question of how this correspondence is realized remains
unanswered.

7.4 Do induced spinor fields define foliation of space-time surface by
2-surfaces?

HO−H duality in its strongest form would mean a foliation of HO/H by HQ 4-surfaces with the
surfaces of the foliation parameterized by the points of any coHQ surface. This foliation is defined
by HO spinor field.

One can ask whether the zero modes of induced H spinor field in X4 could define a foliation
of 4-surface. For HQ 4-surface regarded as surface in H this foliation would be by hyper-complex
(HC) stringy 2-surfaces labelled by the points of any coHC partonic surface. For coHQ 4-surface
both 2-surfaces and co-2-surfaces would be coC surfaces.

How this foliation could be defined by a zero mode of induced H or HO spinor field? The
following argument translates the construction in HO case to HQ case.

1. The first guess is that the map HO → M4×CP2 generalizes to a map X4 → M2×S2. This
means that zero mode must assign to a given point of X4 points of M2 and S2. This map in
turn would define a foliation of X4 by HC 2-surfaces labelled points of any coHC 2-surface
so that string model like structure would result.

2. Point of M2 could be assigned to a point X4 by selecting a preferred subspace of M4 an
applying canonical projection from X4 to M2. Lorentz invariance is a possible source of
troubles.

3. One must consider the situation in both HO and H pictures.

i) The hyper-octonionic spinor field mode of HO induced to space-time surface would has
with respect to the quaternionic automorphism group SO(3) 1 + 3 decomposition.

ii) For a given zero mode of H spinor field with given chirality could be regarded as a 2-
component spinor field having two complexified quaternionic components and obeying Weyl
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condition. If one allows the representation in which quaternionic units are expressed in
terms of Pauli sigma matrices, it decomposes into two doublets under the automorphism
group SU(2) of complexified quaternions. Also an additional U(1) factor appears naturally
from complexification. The identification as representations of electro-weak U(2) would be
indeed very natural. If quaternionic units are representable as in terms of induced H gamma
matrices this decomposition is natural.

4. Assume a selection of preferred hyper-quaternionic imaginary unit. The automorphisms
leaving this unit invariant correspond to the rotation group SO(2) and the possible selections
of this unit are labelled by points of S2 just like in the case of HO the selections remain
invariant under SU(3) and are labelled by S6. S2 degree of freedom corresponds to a freedom
to perform a local rotation for the imaginary part of the argument in hyper-quaternionic
power series. That the groups U(1) and SU(3) are exact symmetries of standard model
might relate to the foliations in some deep manner. In H picture U(1) × U(1) defines the
invariance group and gives S2 = U(2)/U(1)× U(1).

5. In HO picture the tensor product 3 ⊗ 3 for triplet part of Ψ contains triplet identifiable as
SO(3) Lie algebra element which can be exponentiated so that it assigns a point of S2 just as
HO spinor field defines point of CP2. Also the doublet decomposition natural in H picture
allows this kind of map. The point of S2 defines a hyper-complex plane at each point of X4.
Integrable distribution of these planes possibly defined by the analog of Kähler calibration
would define a foliation of X4 by 2-surfaces and its dual.

6. WZW action would presumably emerge as the counterpart of Kähler action now and would
define SO(3)/SO(2) coset model in HO picture. In H picture SO(3)) is replaced by U(2)
and U(2)/U(1)×U(1) coset model results. These models must be equivalent. U(2) would be
identifiable as electro-weak gauge group so that this step in reduction would correspond to
electro-weak symmetry breaking. Since quaternions are complexified the U(1) factor emerges
naturally.

There are obvious generalizations.

1. The construction should generalize also to coHQ surfaces. In this case, the dual 2-surfaces
would be naturally complex both.

2. Similar foliation by 2-surfaces and their co-2-surfaces should appear also in HO picture and
for the induced spinors obtained from those of HO satisfying the modified Dirac equation
defined for the counterpart of Kähler action in HO. A further question inspired by Bohr quan-
tization and duality considerations is whether these foliations are identical set-theoretically
and the differences come only from the induced metric and Kähler structure.

7.5 Web of coset theories?

It seems that there is a web of WZW type models. G2/SU(3) would correspond to QCD type
theory, SU(3)/U(2) to electro-weak theory, U(2)/U(1) to QED type theory. Without having a
deeper knowledge in arrowlogy I cannot avoid the temptation of pondering whether the following
commutative diagram might have some deep significance.
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SO(7) SO(7, 1) SO(7, 1)/SO(7) = H7

SU(3) G2 G2/SU(3) = S6

U(2) SU(3) SU(3)/U(2) = CP2

U(1) U(2) U(2)/U(1) = S2
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7.6 Could configuration space cotangent bundle allow to understand
M-theory dualities at a deeper level?

It is interesting to see how TGD dualities relate to U, T and S dualities of M-theory. T duality
relates large and small scales, S duality g ↔ 1/g relates coupling constants and U dualities
correspond to products of S and T dualities. Obviously HQ − coHQ duality acts like T that it
relates long and short length scales (M4 type and CP2 vacuum extremals in extreme situation).
In the case of HQ− coHQ duality the Z2 symmetry permutes minimum and maximum of LK and
tangential and normal degrees of freedom. In the case of HO−H duality spin and orbital degrees
of freedom are permuted by Z2 symmetry. In cotangent bundle picture fiber and base degrees of
freedom are exchanged. If the coupling constants associated with k and p ' 2k are mapped to
each other, also S duality aspect is involved.

HO −H duality and the generalization of configuration space of 3-surfaces to that of configu-
ration space of 1-surfaces with Kähler metric (which need not exist mathematically except in very
rare special cases) allows also a deeper understanding of spontaneous compactification and the
dualities of M-theory.

Stringy compactification could be understood in terms of the cotangent bundle of stringy con-
figuration space of strings and its dual defining the representations of canonical momenta and
positions in the configuration spaces of strings associated with non-compactified and compactified
target space respectively. This would explain why a given flat space theory allows several com-
pactifications. The non-compactified theory would correspond to the perturbative theory which is
always the same whereas compactifications would correspond to non-perturbative theories, which
are the ”real” theories. The duality mapping strings in two representations to each other would
be analogous to Bohr quantization assigning to a given position q canonical momentum p(q), and
Lagrange manifolds of cotangent bundle of compactified theory would determine a huge variety of
different dualities unless there are some constraints from symmetries. Probably these constraints
are very important, at least in TGD.

The mysterious dualities would thus reduce to a rather familiar notion of cotangent bundle,
the representation of points of the fiber of this bundle as 2-surfaces, and the realization of Bohr
orbitology using a generalization of Lagrange manifold allowing to map points of base-space to
those of fiber.

Of course, this formal picture need not make sense since the existence of infinite-dimensional
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Kähler geometry poses so strong constraints that the notion of dynamical target space must be
given up since for an arbitrary target space configuration space geometry need not exist at all.
This would of course mean getting rid of the landscape problem. Unfortunately, it could also mean
that the physics predicted by string models and M-theory does not have much to do with what we
see in laboratory.

For instance, the Kähler geometry of loop groups is unique and has Kac-Moody algebras as
isometry algebras. This would suggest that the most general choice for target space is as a product
of loop groups containing also Abelian factors. Perhaps also loop analogs of products of coset
spaces are possible. 2-dimensional general coordinate invariance gives strong constraints and Wess-
Zumino-Witten action seems to be a natural candidate for the bosonic part of string action. TGD
suggests that strings in 4-D space is the only possible option since it allows the analog of HQ-
coHQ duality as an additional symmetry. This would however trivialize the theory since internal
symmetries would be absent.

7.7 E8 theory of Garrett Lisi and TGD

Recently (towards end of the year 2007) there has been a lot of fuss about the E8 theory proposed
by Garrett Lisi [51] in physics blogs, in media, and even New Scientist [52] wrote about the topic.
There are serious objections against Lisi’s theory and it is interesting to find whether the theory
could be modified so that it would survive the basic objections. Although it seems that Lisi’s
theory cannot be saved, one achieves further insights about HO-H duality. Number theoretical
spontaneous compactification can be formulated in terms of the Kac-Moody algebra assignable to
Poincare group and standard model gauge group having also rank 8. The representation can be
constructed in standard manner using quantized M8 coordinates at partonic 2-surfaces. Also E8

representations are in principle possible and the question concerns their physical interpretation.

7.7.1 Objections against Lisis theory

The basic claim of Lisi is that one can understand the particle spectrum of standard model in terms
of the adjoint representation of a noncompact version E8 group [53]. There are several objections
against E8 gauge theory interpretation of Lisi.

1. Statistics does not allow to put fermions and bosons in the same gauge multiplet. Also the
identification of graviton as a part of a gauge multiplet seems very strange if not wrong since
there are no roots corresponding to a spin 2 two state.

2. Gauge couplings come out wrong for fermions and one must replace YM action with an ad
hoc action.

3. Poincare invariance is a problem. There is no clear relationship with the space-time geometry
so that the interpretation of spin as E8 quantum numbers is not really justified.

4. Finite-dimensional representations of non-compact E8 are non-unitary. Non-compact gauge
groups are however not possible since one would need unitary infinite-dimensional represen-
tations which would change the physical interpretation completely. Note that also Lorentz
group has only infinite-D unitary representations and only the extension to Poincare group
allows to have fields transforming according to finite-D representations.

5. The prediction of three fermion families is nice but one can question the whole idea of
putting particles with mass scales differing by a factor of order 1012 (top and neutrinos)
into same multiplet. For some reason colleagues stubbornly continue to see fundamental
gauge symmetries where there seems to be no such symmetry. Accepting the existence of
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a hierarchy of mass scales seems to be impossible for a theoretical physicist in main main
stream although fractals have been here for decades.

6. Also some exotic particles not present in standard model are predicted: these carry weak
hyper charge and color (6-plet representation) and are arranged in three families.

7.7.2 Three attempts to save Lisis theory

To my opinion, the shortcomings of E8 theory as a gauge theory are fatal but the possibility to
put gauge bosons and fermions of the standard model to E8 multiplets is intriguing and motivatse
the question whether the model could be somehow saved by replacing gauge theory with a theory
based on extended fundamental objects possessing conformal invariance.

1. In TGD framework H-HO duality allows to consider Super-Kac Moody algebra with rank
8 with Cartan algebra assigned with the quantized coordinates of partonic 2-surface in 8-D
Minkowski space M8 (identifiable as hyper-octonions HO). The standard construction for the
representations of simply laced Kac-Moody algebras allows quite a number of possibilities
concerning the choice of Kac-Moody algebra and the non-compact E8 would be the maximal
choice.

2. The first attempt to rescue the situation would be the identification of the weird spin 1/2
bosons in terms of supersymmetry involving addition of righthanded neutrino to the state
giving it spin 1. This options does not seem to work.

3. The construction of representations of non-simply laced Kac-Moody algebras (performed by
Goddard and Olive at eighties [47]) leads naturally to the introduction of fermionic fields for
algebras of type B, C, and F: I do not know whether the construction has been made for G2.
E6, E7, and E8 are however simply laced Lie groups with single root length 2 so that one
does not obtain fermions in this manner.

4. The third resuscitation attempt is based on fractional statistics. Since the partonic 2-surfaces
are 2-dimensional and because one has a hierarchy of Planck constants, one can have also
fractional statistics. Spin 1/2 gauge bosons could perhaps be interpreted as anyonic gauge
bosons meaning that particle exchange as permutation is replaced with braiding homotopy. If
so, E8 would not describe standard model particles and the possibility of states transforming
according to its representations would reflect the ability of TGD to emulate any gauge or
Kac-Moody symmetry.

The standard construction for simply laced Kac-Moody algebras might be generalized considerably
to allow also more general algebras and fractionization of spin and other quantum numbers would
suggest fractionization of roots. In stringy picture the symmetry group would be reduced consider-
ably since longitudinal degrees of freedom (time and one spatial direction) are non-physical. This
would suggest a symmetry breaking to SO(1, 1)×E6 representations with ground states created by
tachyonic Lie allebra generators and carrying mass squared 2 in suitable units. In TGD framework
the tachyonic conformal weight can be compensated by super-canonical conformal weight so that
massless states getting their masses via Higgs mechanism and p-adic thermodynamics would be
obtained.

7.7.3 Could super-symmetry rescue the situation?

E8 is unique among Lie algebras in that its adjoint rather than fundamental representation has the
smallest dimension. One can decompose the 240 roots of E8 to 112 roots for which two components
of SO(7,1) root vector are ± 1 and to 128 vectors for which all components are ± 1/2 such that the
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sum of components is even. The latter roots Lisi assigns to fermionic states. This is not consistent
with spin and statistics although SO(3,1) spin is half-integer in M8 picture.

The first idea which comes in mind is that these states correspond to super-partners of the
ordinary fermions. In TGD framework they might be obtained by just adding covariantly constant
right-handed neutrino or antineutrino state to a given particle state. The simplest option is that
fermionic super-partners are complex scalar fields and sbosons are spin 1/2 fermions. It however
seems that the super-conformal symmetries associated with the right-handed neutrino are strictly
local in the sense that global super-generators vanish. This would mean that super-conformal
super-symmetries change the color and angular momentum quantum numbers of states. This is a
pity if indeed true since super-symmetry could be broken by different p-adic mass scale for super
partners so that no explicit breaking would be needed.

7.7.4 Could Kac Moody variant of E8 make sense in TGD?

One can leave gauge theory framework and consider stringy picture and its generalization in TGD
framework obtained by replacing string orbits with 3-D light-like surfaces allowing a generalization
of conformal symmetries.

H-HO duality is one of the speculative aspects of TGD. The duality states that one can either
regard imbedding space as H = M4×CP2 or as 8-D Minkowski space M8 identifiable as the space
HO of hyper-octonions which is a subspace of complexified octonions. Spontaneous compactifica-
tion for M8 described as a phenomenon occurring at the level of Kac-Moody algebra would relate
HO-picture to H-picture which is definitely the fundamental picture. For instance, standard model
symmetries have purely number theoretic meaning in the resulting picture.

The question is whether the non-compact E8 could be replaced with the corresponding Kac
Moody algebra and act as a stringy symmetry. Note that this would be by no means anything
new. The Kac-Moody analogs of E10 and E11 algebras appear in M-theory speculations. Very
little is known about these algebras. Already E < sub > n < /sub >, n > 8 is infinite-dimensional
as an analog of Lie algebra. The following argument shows that E8 representations do not work
in TGD context unless one allows anyonic statistics.

1. In TGD framework space-time dimension is D=8. The speculative hypothesis of HO-H
duality inspired by string model dualities states that the descriptions based on the two choices
of imbedding space are dual. One can start from 8-D Cartan algebra defined by quantized M8

coordinates regarded as fields at string orbit just as in string model. A natural constraint is
that the symmetries act as isometries or holonomies of the effectively compactified M8. The
article ”The Octonions” [29] of John Baez discusses exceptional Lie groups and shows that
compact form of E8 appears as isometry group of 16-dimensional octo-octonionic projective
plane E8/(Spin(16)/Z2): the analog of CP2 for complexified octonions. There is no 8-D
space allowing E8 as an isometry group. Only SO(1,7) can be realized as the maximal
Lorentz group with 8-D translational invariance.

2. In HO picture some Kac Moody algebra with rank 8 acting on quantized M8 coordinates
defining stringy fields is natural. The charged generators of this algebra are constructible
using the standard recipe involving operators creating coherent states and their conjugates
obtained as operator counterparts of plane waves with momenta replaced by roots of the
simply laced algebra in question and by normal ordering.

3. Poincare group has 4-D maximal Cartan algebra and this means that only 4 Euclidian di-
mensions remain. Lorentz generators can be constructed in standard manner in terms of
Kac-Moody generators as Noether currents.

4. The natural Kac-Moody counterpart for spontaneous compactification to CP2 would be that
these dimensions give rise to the generators of electro-weak gauge group identifiable as a
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product of isometry and holonomy groups of CP2 in the dual H-picture based on M4×CP2.
Note that in this picture electro-weak symmetries would act geometrically in E4 whereas in
CP2 picture they would act only as holonomies.

Could one weaken the assumption that Kac-Moody generators act as symmetries and that
spin-statistics relation would be satisfied?

1. The hierarchy of Planck constants relying on the generalization of the notion of imbedding
space breaks Poincare symmetry to Lorentz symmetry for a given sector of the world of
classical worlds for which one considers light-like 3-surfaces inside future and past directed
light cones. Translational invariance is obtained from the wave function for the position of
the tip of the light cone in M4. In this kind of situation one could consider even E8 symmetry
as a dynamical symmetry.

2. The hierarchy of Planck constants involves a hierarchy of groups and fractional statistics at
the partonic 2-surface with rotations interpreted as braiding homotopies. The fractionization
of spin allows anyonic statistics and could allow bosons with anyonic half-odd integer spin.
Also more general fractional spins are possible so that one can consider also more general
algebras than Kac-Moody algebras by allowing roots to have more general values. Quantum
versions of Kac-Moody algebras would be in question. This picture would be consistent with
the view that TGD can emulate any gauge algebra with 8-D Cartan algebra and Kac-Moody
algebra dynamically. This vision was originally inspired by the study of the inclusions of
hyper-finite factors of type II¡sub¿1¡/sub¿. Even higher dimensional Kac-Moody algebras
are predicted to be possible.

3. It must be emphasized that these considerations relate in TGD framework to Super-Kac
Moody algebra only. The so called super-canonical algebra is the second quintessential part
of the story. In particular, color is not spin-like quantum number for quarks and quark color
corresponds to color partial waves in the world of classical worlds or more concretely, to the
rotational degrees of freedom in CP2 analogous to ordinary rotational degrees of freedom of
rigid body. Arbitrarily high color partial waves are possible and also leptons can move in
triality zero color partial waves and there is a considerable experimental evidence for color
octet excitations of electron and muon but put under the rug.

7.7.5 Can one interpret three fermion families in terms of E8 in TGD framework?

The prediction of three fermion generations by E8 picture must be taken very seriously. In TGD
three fermion generations correspond to three lowest genera g = 0, 1, 2 (handle number) for which
all 2-surfaces have Z2 as global conformal symmetry (hyper-ellipticity [F1, F2]). One can assign to
the three genera a dynamical SU(3) symmetry. Theye are related by SU(3) triality which brings
in mind the triality symmetry acting on fermion generations in E8 model. SU(3) octet and singlet
bosons correspond to pairs of light-like 3-surfaces defining the throats of a wormhole contact and
since their genera can be different one has color singlet and octet bosons. Singlet corresponds to
ordinary bosons. Color octet bosons must be heavy since they define neutral currents between
fermion families.

The three E8 anyonic boson families cannot represent family replication since these symmetries
are not local conformal symmetries: it obviously does not make sense to assign a handle number
to a given point of partonic 2-surface! Also bosonic octet would be missing in E8 picture.

One could of course say that in E8 picture based on fractional statistics, anyonic gauge bosons
can mimic the dynamical symmetry associated with the family replication. This is in spirit with
the idea that TGD Universe is able to emulate practically any gauge - or Kac-Moody symmetry
and that TGD Universe is busily mimicking also itself.
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To sum up, the rank 8 Kac-Moody algebra - emerging naturally if one takes HO-H duality
seriously - corresponds very naturally to Kac-Moody representations in terms of free stringy fields
for Poincare-, color-, and electro-weak symmetries. One can however consider the possibility of
anyonic symmetries and the emergence of non-compact version of E8 as a dynamical symmetry,
and TGD suggests much more general dynamical symmetries if TGD Universe is able to act as
the physics analog of the Universal Turing machine.

8 Appendix A: Is G2/SU(3) coset model a rational conformal
field theory?

G2/SU(3) coset model model has central charge c = 3/4, which corresponds to rational conformal
field theory. The question is whether G2/SU(3) model could reduce to c = 3/4 rational CFT.

Let us recall the standard facts about rational conformal field theories. The reason for their
nice properties is that there exists an infinite number of conformal fields, which create degenerate
states having zero norm as states of Virasoro algebra.

1. For a given value c of the Virasoro central charge, the degenerate states appear for special
values of the conformal weights given by Kac formula

∆m,n = ∆0 + 1
4 (α+m + α−n)2 ,

∆0 = 1
24 (c− 1) , α± =

√
1−c±√25−c√

24
.

(62)

The requirement that conformal weights are real and positive excludes c > 1. c < 1 is
however not enough to guarantee positivity of conformal weights.

2. The primary fields labelled by the integers m and n satisfy the fusion rules

Ψm1,n1Ψm2,n2 =
m1+m2+1∑

k=|m1−m2|+1

n1+n2+1∑

l=|n1−n2|+1

Ψk,l . (63)

The fusion algebra is infinite unless the number of degenerate states is infinite.

3. If the ratio α+/α− is irrational, the value of ∆m,n can be arbitrary near to ∆0 and thus
negative, which is physically unacceptable. Thus physical considerations force the rationality
assumption

−α−
α+

=
p

q
, (64)

where p and q are positive integers. The numbers of primary fields in this case is finite since
0 < m < p, 0 < n < q holds true.

From c = 3/4 the values of integers p and q are p = 5, q = 6 so that the number of primary fields
Ψm,n, 0 < m < p, 0 < n < 1 of the coset model would be (p− 1)(q − 1) = 20. There are only 10
different pairs conformal weights. The list of the weights is given by the following table
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n/m 1 2 3 4
5 3 7/5 2/5 0
4 13/8 21/40 1/40 1/8
3 2/3 1/15 1/15 2/3
2 1/8 1/40 21/40 13/8
1 0 2/5 7/5 3

Table 1. The conformal weights of 20 primary fields of c = 3/4 rational QFT.

The odd rows of the table give the conformal weights of the three state Potts model (in the
fusion algebra the products of odd rows give only odd rows). ∆ = 3 corresponds to the conformal
weight of the W field of W3 algebra realized as a third order SU(3) Casimir operator trilinear and
completely symmetric in SU(3) Kac-Moody generators [59].

Three-state Potts model has been proposed as a model for the critical behavior of 2+1-
dimensional QCD in confinement-de-confinement transition [58], and it is interesting to see whether
G2/SU(3) theory could reduce to it. The conformal weights of G2/SU(3) theory are given by the
differences ∆ = c(G2, R)/5− c(SU(3), R′)/4, where R corresponds to 1-D and 7-D representations
of G2 and R′ to the representations 1, 1, 3, 3 of SU(3). It is obvious that the primary fields cor-
responding to 1, 1, 1, 3, and 3 cannot correspond to the primary of the rational CFT. Neither the
resulting weight spectrum 0, c(G2, 7)/5, c(G2, 7)/5− 2/3 can correspond to the weights appearing
in the table. Also the upper bound ∆ ≤ c(G2, 7) < c(G2, 14) = 4/5 fails to be satisfied. The
spectrum of conformal weights is (0, 11/30, 1/30, 1/30).
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