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Abstract

The massless sector of the TGD and particle massivation is studied in this chapter. The
identification of the spectrum of light particles reduces to two tasks: the construction of mass-
less states and the identification of the states which remain light in p-adic thermodynamics.

1. Physical states as representations of super-canonical and Super Kac-Moody algebras

Physical states belong to the representation of super-canonical algebra and Super Kac-
Moody algebra of SO(2)×E2 × SU(3)×U(2)ew associated with the 2-D surfaces X2 defined
by the intersections of 3-D light like causal determinants (CDs) with 7-D CDs X7 = X3

l ×
CP2, where X3

l is boundary of future or past directed light cone. These 2-surfaces have
interpretation as partons, and the effective 2-dimensionality means that the machinery of 2-D
conformal field theories can be applied in the state construction.

The recipe is simple. Construct first a null state with a non-positive conformal weight using
super-canonical generators, and then apply Super-Kac Moody generators to compensate this
conformal weight to get a state with vanishing conformal weight and zero mass. Pose also
the conditions that the commutator of super-canonical and super Kac-Moody algebras and
corresponding commutator of Virasoro algebras annihilates physical states.

The conformal weights of super-canonical algebra generators are complex and in a well-
defined sense expressible in terms of zeros of Riemann Zeta although the connection is much
more subtle as thought originally [C1] and conformal weight cannot be regarded as quantum
number in the standard sense of the word. More precisely, the arguments of [C1] suggest that
radial conformal weight ∆ for super-canonical algebra in fact depends on the point of geodesic
sphere S2 in CP2 and is given in terms of the inverse ζ−1(z) of Riemann ζ having the natural
complex coordinate z of S2 as argument. This implies a mapping of the radial conformal
weights to the points of the geodesic sphere CP2 serving in the role of ”conformal heavenly
sphere”.

Linear combinations of zeros correspond to algebraic points in the intersections of real and
p-adic partonic 2-surfaces and are thus in a unique role from the point of view of p-adicization.
They can be also identified as conformal weights associated with parton as an n-particle state
in the algebraic sense (these points correspond to arguments of n-point functions of conformal
field theory in the construction of S-matrix). This discrete set of points defines in a natural
manner number theoretic braid and a connection with braiding S-matrices emerges. This if
one believes the basic conjecture that the numbers ps, p prime and s zero of Riemann Zeta
are algebraic numbers.

The original hypothesis was that the conformal weights of physical states are real. This
would imply conformal confinement to which color confinement might reduce: what would
happen that partons can have complex super-canonical conformal weights but particles have
real conformal weights. It has however turned out that there is actually no strong reason for
the reality of the conformal weights.

The waves xs with conformal weights s = 1/2 + i
∑

k
nkyk, where sk = 1/2 + iyk is a

zero of Zeta, define an orthogonal basis with respect to the inner product defined by the
integration measure dx/x. These conformal weights can be assigned to both the eigenvalues
of the modified Dirac operator and to radial logarithmic waves multiplying the Hamiltonians
at δM4

± × CP2 appearing in the construction of the configuration space geometry.
The imaginary part of the complex weight would allow to distinguish between particle

and its phase conjugate (phase conjugate photons obey time reversed dynamics) by assigning
to a particle inherent time orientation allowing to distinguish between positive energy parti-
cle propagating to the geometric future from a negative energy particle propagating to the
geometric past. Obviously a strong correlation with second law of thermodynamics would
emerge. It has turned out that the conformal weights s = 1/2 + iyk correspond to systems
critical against transition changing the value of Planck constant.

One can also introduce the notion of bound state conformal weight in terms of Riemann
polyzetas, and it turns out that number theoretic constraints imply that the net conformal
weights in this case have the same spectrum as in single particle case and that irreducible n-
particle bound states are possible only for n = 2 and 3. This suggests a connection with valence
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quark numbers of mesons and baryons and perhaps also with family replication phenomenon
(parton with genus g = 0, 1, 2 as conformally bound state of sphere and g handles so that only
3 stable particle families would result). The zeros of Zeta represent essentially non-stringy
aspects of TGD being due to the fact that the basic objects are effectively 2-dimensional rather
than 1-dimensional.

For spinor harmonics of CP2 the correlation between color and electro-weak quantum
numbers is not correct. Super-canonical generators provide a natural mechanism allowing to
cure the problem. Boson states are identified as bi-local bilinears of fermions and anti-fermions
in X2 characterized by charge matrices and conformally invariant correlation function. BFF
coupling constants can be identified in terms of normalization factors of the boson states. The
small value of gravitational coupling can be understood as resulting by a fractal mechanism
reducing its value from the square of p-adic length Lp, and a concrete physical interpretation
for the expression of gravitational constant in terms of CP2 length derived from number
theoretic arguments emerges. The presence of primes 2, 3, ...23, p in the expression of the
gravitational constant can be interpreted in terms of multi-p p-adic fractality involving these
primes.

If the primes p = 2, 3, ...23 are present, the question whether besides p-adic length scales
Lp ∝ √

p also their multiples
√∏

i
qiLp, where {qi} forms a subset of {2, 3, ..., 23} define

fundamental length scales. The implication would be small-p p-adic fractality for these small
primes with each p-adic length scale Lp taking the role of CP2 length, and there indeed is
some evidence for this kind of fractality.

2. Particle massivation

Particle massivation can be regarded as a change of the vanishing parton conformal weights
describable as a thermal mixing with higher conformal weights. The observed mass squared
is not p-adic thermal expectation of mass squared but that of conformal weight so that there
are no problems with Lorentz invariance.

The space-time mechanism of massivation can be articulated in several manners.
a) CP2 type vacuum extremals representing elementary particles have random light-like

curve as an M4 projection so that the average motion correspond to that of massive particle.
Lighlike randomness gives rise to classical Virasoro conditions. p-Adic thermodynamics is
consistent with this picture.

b) A possible candidate for the physical mechanism causing the thermal massivation is
hydrodynamical mixing by the braiding flow. One can imagine several realizations for this
flow. For instance a flow defined by the normal components of energy momentum tensor of the
induced Kähler field at light like 3-D CDs describing the orbits of partons. Number theoretical
approach leads to a purely number theoretical identification of braids and braiding flow and
it seems that this flow might be more fundamental.

c) The fundamental parton level description of TGD is based on almost topological QFT
for light-like 3-surfaces. Dynamics is constrained only by the requirement that CP2 projection
is for extremals of Chern-Simons action 2-dimensional and for off-shell states light-likeness
is the only constraint. Hence a justification for the ergodic hydrodynamic flow as a fun-
damental cause of massivation emerges. The symmetries respecting light-likeness property
correspond gives rise to Kac-Moody type algebra and super-canonical symmetries emerge also
naturally as well as N = 4 character of super-conformal invariance. Four-momentum appears
as non-conserved Noether charge (mass squared is however conserved) and has identification
as gravitational four-momentum. Inertial momentum corresponds to the statistical average of
gravitational four-momentum and p-adic thermodynamics is thus a natural description.

This mechanism cannot explain the massivation of electro-weak gauge bosons, which could
be caused either by TGD variant of Higgs mechanism or by the fact that the charge matrices
of W boson and left handed component of Z0 are not covariantly constant, which together
with the hydrodynamical mixing could lead to a loss of correlations. TGD indeed predicts a
candidate for Higgs as a wormhole contact whose throats are identified as lightlike 3-surfaces
and carry quantum numbers of fermion and antifermion and it is now clear that this is the
correct option.
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The underlying philosophy is that real number based TGD can be algebraically continued
to various p-adic number fields. This gives justification for the use of p-adic thermodynamics
although the mapping of p-adic thermal expectations to real counterparts is not completely
unique. Instead of energy, the Super Kac-Moody Virasoro generator L0 (essentially mass
squared) is thermalized in p-adic thermodynamics. This guarantees Lorentz invariance. It is
important to notice that four-momentum does not appear in the definition of super Virasoro
generators. The reason is simply that four-momentum does not appear in the expression
of super Virasoro generators as Noether charges associated with the modified Dirac action.
The dependence of Virasoro generators on four-momentum would be in conflict with Lorentz
invariance.

p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length
scale R ∼ L and thus of order R ' 104

√
G and therefore 104 times larger than the naive

guess. Hence p-adic thermodynamics describes the mixing of states with vanishing conformal
weights with their Super Kac-Moody Virasoro excitations having masses of order 10−4 Planck
mass.

p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann
weight exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1
whereas Tp = 1/2 seems to be the only reasonable choice for bosons. That mass squared,
rather than energy, is a fundamental quantity at CP2 length scale is also suggested by a
simple dimensional argument (Planck mass squared is proportional to h̄ so that it should
correspond to a generator of some Lie-algebra (Virasoro generator L0!)).

There is also modular contribution to the mass squared which can be estimated using
elementary particle vacuum functionals in the conformal modular degrees of freedom of the
partonic 2-surface. This contribution can be identified as a contribution coming from a ther-
modynamics in super-canonical Virasoro algebra which generates excitations of the ground
states with negative conformal weight.

The predictions of the general theory are consistent with the earlier mass calculations, and
the earlier ad hoc parameters disappear. In particular, optimal lowest order predictions for
the charged lepton masses are obtained and photon, gluon and graviton appear as essentially
massless particles. The negative conformal weight created by super-canonical generators can
have arbitrarily large magnitude (ground state corresponds to a null state of super-conformal
algebra annihilated by Ln, n < 0) so that an infinite hierarchy of exotic massless states is
in principle possible. These states receive mass by the proposed mechanism and they are
expected to be unstable but it remains to be shown that they do not appear in the spectrum
of light particles. Since X2 can have an arbitrarily large size and can even correspond to black
hole horizon, the emergence of this complex structure of states is completely natural.

1 Introduction

This chapter tries to represent the most recent view about particle massivation. The identification
of the spectrum of light particles reduces to two tasks: the construction of massless states and
the identification of the states which remain light in p-adic thermodynamics. The latter task is
relatively straightforward. The thorough understanding of the massless spectrum requires however
a real understanding of quantum TGD. It would be also highly desirable to understand why p-adic
thermodynamics combined with p-adic length scale hypothesis works. A lot of progress has taken
place in these respects during last years.

Zero energy ontology providing a detailed geometric view about bosons and fermions, the
generalization of S-matrix to what I call M-matrix, the notion of finite measurement resolution
characterized in terms of inclusions of von Neumann algebras, the derivation of p-adic coupling
constant evolution and p-adic length scale hypothesis from the first principles, and understanding of
Higgs mechanism in terms of the generalized eigenvalues of the modified Dirac operator: these are
the most important steps of progress during last years with a direct relevance for the understanding
of particle spectrum and massivation although the predictions of p-adic thermodynamics are not
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affected. What is frustrating is that the joy by every great step of progress is shadowed by the
realization that it creates a lot of mammoth bones generating internal inconsistencies (there are
fifteen books about TGD so that I have to fight fiercely to avoid total chaos!), and I feel that
my first task before continuing is to represent apologies for not being able to identify all of them.
Therefore it is better to take these chapters as lab note books rather than final summaries.

1.1 How p-adic coupling constant evolution and p-adic length scale hy-
pothesis emerge from quantum TGD?

What p-adic coupling constant evolution really means has remained for a long time more or less
open and detailed attempts to model the situation has suffered from this. The progress made in the
understanding of the S-matrix of the theory [C2] has however changed the situation dramatically.

1.1.1 M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through
the understanding of S-matrix, or actually M-matrix defining entanglement coefficients between
positive and negative energy parts of zero energy states in zero energy ontology [C2]. M-matrix
has interpretation as a ”complex square root” of density matrix and thus provides a unification of
thermodynamics and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude
multiplying positive and real square root of density matrix analogous to modulus of Schrödinger
amplitude.

The notion of finite measurement resolution realized in terms of inclusions of von Neumann
algebras allows to demonstrate that the irreducible components of M-matrix are unique and pos-
sesses huge symmetries in the sense that the hermitian elements of included factor N ⊂M defining
the measurement resolution act as symmetries of M-matrix, which suggests a connection with in-
tegrable quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution as-
sociated with time scales Tn, which come as octaves of a fundamental time scale: Tn = 2nT0.
Number theoretic universality requires that renormalized coupling constants are rational or at
most algebraic numbers and this is achieved by this discretization since the logarithms of dis-
cretized mass scale appearing in the expressions of renormalized coupling constants reduce to the
form log(2n) = nlog(2) and with a proper choice of the coefficient of logarithm log(2) dependence
disappears so that rational number results.

1.1.2 p-Adic coupling constant evolution

One can wonder how this picture relates to the earlier hypothesis that p-adic length coupling
constant evolution is coded to the hypothesized log(p) normalization of the eigenvalues of the
modified Dirac operator D. There are objections against this normalization. log(p) factors are
not number theoretically favored and one could consider also other dependencies on p. Since the
eigenvalue spectrum of D corresponds to the values of Higgs expectation at points of partonic
2-surface defining number theoretic braids, Higgs expectation would have log(p) multiplicative
dependence on p-adic length scale, which does not look attractive.

Is there really any need to assume this kind of normalization? Could the coupling constant
evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 induce p-adic coupling constant
evolution and explain why p-adic length scales correspond to Lp ∝ √

pR, p ' 2k, R CP2 length
scale? This looks attractive but there is a problem. p-Adic length scales come as powers of

√
2

rather than 2 and the strongly favored values of k are primes and thus odd so that n = k/2 would
be half odd integer. This problem can be solved.
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1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0

(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√

pLp, which corresponds to secondary p-adic length scale. For instance,
in the case of electron with p = M127 one would have T127 = .1 second which defines a
fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep connection between
elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3.

4. The fundamental role of 2-adicity suggests that the fundamental coupling constant evolution
and p-adic mass calculations could be formulated also in terms of 2-adic thermodynamics.
With a suitable definition of the canonical identification used to map 2-adic mass squared
values to real numbers this is possible, and the differences between 2-adic and p-adic ther-
modynamics are extremely small for large values of for p ' 2k. 2-adic temperature must be
chosen to be T2 = 1/k whereas p-adic temperature is Tp = 1 for fermions. If the canonical
identification is defined as

∑

n≥0

bn2n →
∑

m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same
as for p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics with
TR = 1/k gives essentially the same results as the 2-adic one in the lowest order so that the
interpretation in terms of effective 2-adic/p-adic topology is possible.

1.2 How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
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restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that the
needed phase factor corresponds to either Chern-Simons type action or a boundary term of YM
action associated with a particle carrying gauge charges of the quantum state. This action would
be defined for the induced gauge fields. YM action seems to be excluded since it is singular for
light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3) but also√

det(g4) vanishes).
The challenge is to show that this is enough to guarantee that X4(X3

max) carries correct gauge
charges. Kind of electric-magnetic duality should relate the normal components Fni of the gauge
fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is in terms
of quantum gravitational holography. The difference between Chern-Simons action characterizing
quantum state and the fundamental Chern-Simons type factor associated with the Kähler form
would be that the latter emerges as the phase of the Dirac determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M-matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

1.3 Physical states as representations of super-canonical and Super Kac-
Moody algebras

Physical states belong to the representation of super-canonical algebra and Super Kac-Moody
algebra assignable SO(2)×SU(3)×SU(2)rot×U(2)ew associated with the 2-D surfaces X2 defined
by the intersections of 3-D light like causal determinants (CDs) with 7-D CDs X7 = X3

l × CP2,
where X3

l is boundary of future or past directed light cone. These 2-surfaces have interpretation
as partons, and the effective 2-dimensionality means that the machinery of 2-D conformal field
theories can be applied in the state construction.

It has taken considerable effort to understand the relationship between super-canonical and
super Kac-Moody algebras and there are still many uncertainties involved. What looks like the
most plausible option relies on the generalization of a coset construction proposed already for years
ago but given up because of the lacking understanding of how SKM and SC algebras could be lifted
to the level of imbedding space. The progress in the Physics as generalized number theory program
provided finally a justification for the coset construction.

1. Assume a generalization of the coset construction in the sense that the differences of super
Kac-Moody Virasoro generators (SKMV) and super-canonical Virasoro generators (SCV) an-
nihilate the physical states. The interpretation is in terms of TGD counterpart for Einstein’s
equations realizing Equivalence Principle. Mass squared is identified as the p-adic ther-
mal expectation value of either SKMV or SCV conformal weight (gravitational or inertial
mass) in a superposition of states with SKMV (SCV ) conformal weight n ≥ 0 annihilated
by SKMV − SCV .

2. Construct first ground states with negative conformal weight annihilated by SKMV and
SCV generators Gn, Ln, n < 0. Apply to these states generators of tensor factors of Super
Viraroso algebras to obtain states with vanishing SCV and SKMV conformal weights.
After this construct thermal states as superpositions of states obtained by applying SKMV
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generators and corresponding SCV generators Gn,Ln, n > 0. Assume that these states are
annihilated by SCV and SKMV generators Gn, Ln,n > 0 and by the differences of all SCV
and SKMV generators.

3. Super-canonical algebra represents a completely new element and in the case of hadrons
the non-perturbative contribution to the mass spectrum is easiest to understand in terms of
super-canonical thermal excitations contributing roughly 70 per cent to the p-adic thermal
mass of the hadron. It must be however emphasized that by SKMV-SCV duality one can
regard these contributions equivalently as SKM or SC contributions.

1.4 Particle massivation

Particle massivation can be regarded as a change of the vanishing parton conformal weights de-
scribable as a thermal mixing with higher conformal weights. The observed mass squared is not
p-adic thermal expectation of mass squared but that of conformal weight so that there are no
problems with Lorentz invariance.

The space-time mechanism of massivation can be articulated in several manners.

1. CP2 type vacuum extremals representing elementary particles have random light-like curve
as an M4 projection so that the average motion correspond to that of massive particle.
Light-like randomness gives rise to classical Virasoro conditions. p-Adic thermodynamics is
consistent with this picture.

2. A possible candidate for the physical mechanism causing the thermal massivation is hydro-
dynamical mixing by the braiding flow. One can imagine several realizations for this flow.
For instance a flow defined by the normal components of energy momentum tensor of the
induced Kähler field at light like 3-D CDs describing the orbits of partons. Number theoret-
ical approach leads to a purely number theoretical identification of braids and braiding flow
[B4, C1] and it seems that this flow might be more fundamental.

3. The fundamental parton level description of TGD is based on almost topological QFT for
light-like 3-surfaces. Dynamics is constrained only by the requirement that CP2 projection
is for extremals of Chern-Simons action 2-dimensional and for off-shell states light-likeness is
the only constraint. Hence a justification for the ergodic hydrodynamic flow as a fundamental
cause of massivation emerges. The symmetries respecting light-likeness property correspond
gives rise to Kac-Moody type algebra and super-canonical symmetries emerge also naturally
as well as N = 4 character of super-conformal invariance. Four-momentum appears as non-
conserved Noether charge (mass squared is however conserve

4. and has identification as gravitational four-momentum. Inertial momentum corresponds to
the statistical average of gravitational four-momentum and p-adic thermodynamics is thus a
natural description.

This mechanism cannot explain the massivation of electro-weak gauge bosons, which could be
caused either by TGD variant of Higgs mechanism or by the fact that the charge matrices of W
boson and left handed component of Z0 are not covariantly constant, which together with the
hydrodynamical mixing could lead to a loss of correlations. TGD indeed predicts a candidate for
Higgs as a wormhole contact whose throats are identified as lightlike 3-surfaces and carry quantum
numbers of fermion and antifermion and it is now clear that this is the correct option.

The underlying philosophy is that real number based TGD can be algebraically continued to
various p-adic number fields. This gives justification for the use of p-adic thermodynamics although
the mapping of p-adic thermal expectations to real counterparts is not completely unique. Instead
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of energy, the Super Kac-Moody Virasoro generator L0 (essentially mass squared) is thermalized
in p-adic thermodynamics. This guarantees Lorentz invariance. It is important to notice that four-
momentum does not appear in the definition of super Virasoro generators. The reason is simply
that four-momentum does not appear in the expression of super Virasoro generators as Noether
charges associated with the modified Dirac action. The dependence of Virasoro generators on
four-momentum would be in conflict with Lorentz invariance.

p-Adic thermodynamics forces to conclude that CP2 radius is essentially the p-adic length scale
R ∼ L and thus of order R ' 104

√
G and therefore 104 times larger than the naive guess. Hence

p-adic thermodynamics describes the mixing of states with vanishing conformal weights with their
Super Kac-Moody Virasoro excitations having masses of order 10−4 Planck mass.

p-Adic temperature is quantized by purely number theoretical constraints (Boltzmann weight
exp(−E/kT ) is replaced with pL0/Tp , 1/Tp integer) and fermions correspond to Tp = 1 whereas
Tp = 1/2 seems to be the only reasonable choice for bosons. That mass squared, rather than
energy, is a fundamental quantity at CP2 length scale is also suggested by a simple dimensional
argument (Planck mass squared is proportional to h̄ so that it should correspond to a generator
of some Lie-algebra (Virasoro generator L0!)).

There is also modular contribution to the mass squared which can be estimated using elementary
particle vacuum functionals in the conformal modular degrees of freedom of the partonic 2-surface.
For bosons both Virasoro and modular contributions seem to be negligible and could be due to
the smallness of the p-adic temperature. Virasoro contribution can be identified as a contribution
coming from a thermodynamics in super-canonical Virasoro algebra which generates excitations of
the ground states with negative conformal weight. This contribution will be discussed in the next
section.

The predictions of the general theory are consistent with the earlier mass calculations, and
the earlier ad hoc parameters disappear. In particular, optimal lowest order predictions for the
charged lepton masses are obtained and photon, gluon and graviton appear as essentially massless
particles. The negative conformal weight created by super-canonical generators can have arbitrarily
large magnitude (ground state corresponds to a null state of super-conformal algebra annihilated
by Ln, n < 0) so that an infinite hierarchy of exotic massless states is in principle possible. These
states receive mass by the proposed mechanism and they are expected to be unstable but it remains
to be shown that they do not appear in the spectrum of light particles. Since X2 can have an
arbitrarily large size and can even correspond to black hole horizon, the emergence of this complex
structure of states is completely natural.

2 Heuristic picture about massivation

The understanding of particle massivation developed in an inverted manner from p-adic mass
calculations to their interpretation and has been a process with several side tracks. The recent
picture is that massivation involves two mechanisms. p-Adic thermodynamics gives the dominant
contribution to the masses of fermions and involves the contributions from p-adic thermodynamics
for Virasoro generator L0 and thermodynamics in modular degrees of freedom explaining the
mass differences between different fermion families. Besides this there is contribution to Higgs
particle identified as a wormhole contact carrying net weak isospin assignable to the fermion and
antifermion at the lightlike partonic 3-surfaces defining the throats of the wormhole contact. This
contribution dominates the masses of gauge bosons.

2.1 The relationship between inertial gravitational masses

It took quite a long time to accept the obvious fact that the relationship between inertial and
gravitational masses cannot be quite the same as in General Relativity.
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2.1.1 Modification of the Equivalence Principle?

The findings of [D3] combined with the basic facts about imbeddings of Robertson-Walker cos-
mologies [D5] force the conclusion that inertial mass density vanishes in cosmological length scales.
This is possible if the sign of inertial energy depends on time orientation of the space-time sheet.
This forces a modification of Equivalence Principle. The modified Equivalence Principle states
that gravitational energy corresponds to the absolute value of inertial energy. Since inertial energy
can have both signs, this means that gravitational mass is not conserved and is non-vanishing
even for vacuum extremals. This differences is dual for the two time times: the experienced time
identifiable as a sequence of quantum jumps and geometric time.

More generally, all conserved (that is Noether-) charges of the Universe vanish identically and
their densities vanish in cosmological length scales. The simplest generalization of the Equivalence
Principle would be that gravitational four-momentum equals to the absolute value of inertial four-
momentum and is thus not conserved in general. Gravitational mass density does not vanish
for vacuum extremals and, as will be found, one can deduce the renormalization of gravitational
constant at given space-time sheet from the requirement that gravitational mass is conserved inside
given space-time sheet. The conservation law holds only true inside given space-time sheet.

An interesting question is whether inertial-gravitational duality generalizes to the case of color
gauge charges so that color gauge fluxes would correspond to ”gravitational” color charges and the
charges defined by the conserved currents associated with color isometries would define ”inertial”
color charges. Since induced color fields are proportional to color Hamiltonians multiplied by
Kähler form they vanish identically for vacuum extremals in accordance with ”gravitational” color
confinement.

2.1.2 # contacts, non-conservation of gauge charges and gravitational four-momentum,
and Higgs mechanism

Gravitational # contacts are necessary and if gravitational energy can be regarded in the New-
tonian limit as a gauge charge, the contacts feed the gravitational energy regarded as a gauge
flux to the lower condensate levels. The non-conservation of gravitational gauge flux means that
# contacts can carry gravitational four-momentum and since CP2 type vacuum extremals are
the natural candidates for # contacts, the natural hypothesis is that the non-conserved light-like
gravitational four-momentum of # contacts is responsible for the non-conservation of gravitational
four-momentum flux. The non-conservation of the light-like gravitational four-momentum of CP2

type extremals would in turn be responsible for the non-conservation of the net gravitational
four-momentum.

# contacts could be also carriers of inertial mass which must be conserved in absence of four-
momentum exchange between environment and wormhole contact. Therefore Equivalence Principle
cannot hold true in a strict sense even at elementary particle level. Equivalence Principle would
be satisfied in a weak sense if the inertial four-momentum is equal to the average four-momentum
associated with the zitterbewegung motion and corresponds to the center of mass motion for the
# contact.

The non-conservation of weak gauge currents for CP2 type extremals implies a non-conservation
of weak charges and the finite range of weak forces. If wormhole contacts correspond to pieces
of CP2 type vacuum extremal, electro-weak gauge currents are not conserved classically unlike
color and Kähler current. The non-conservation of weak isospin corresponds to the presence of
pairs of right/left handed fermion and left/right handed antifermion at wormhole contacts. These
wormhole contacts are excellent candidates for the TGD counterpart of Higgs boson providing
the most natural mechanism for the massivation of weak bosons. The dominant contribution to
fermion mass would be due to p-adic thermodynamics [F3]. If weak form of Equivalence Principle
holds true, inertial mass would result simply as the average of non-conserved light-like gravitational
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four-momentum.
There would be two contributions to the mass of the elementary particle.

1. Part of the inertial mass is generated in the topological condensation of CP2 type extremal
representing elementary particle involving only single light like elementary particle horizon,
say fermion, and would correspond naturally to the contribution to the mass modellable
using p-adic thermodynamics. The contribution from primary topological condensation is
negligible if the radius of the zitterbewegung orbit is larger than the size of the space-time
sheet containing the topologically condensed boson so that the motion is along a light-like
geodesic in a good approximation. For gauge bosons this contribution should be very small or
vanishing. Systems like superconductors where also photons and even gravitons can become
massive [D3] might form an exception in this respect.

2. The space-time sheet representing massless state suffered secondary topological condensation
at a larger space-time sheet and viewed as a particle can develop an additional contribution
to the mass via Higgs mechanism since the wormhole contacts cannot be regarded as moving
along light like geodesics of M4 in the length and time scale involved. # contacts carrying
a net weak isospin would have interpretation as TGD counterparts of neutral Higgs bosons
and the formation of coherent state involving a superposition of states with varying number
of wormhole contacts would correspond to the generation of a vacuum expectation value of
Higgs field. The inertial mass of the wormhole contact must be small, presumably its order
of magnitude is given by 1/Lp, where Lp is the characteristic p-adic length scale associated
with a given condensate level.

2.1.3 Gravitational mass is necessarily accompanied by non-vanishing gauge charges

The experience from the study of the extremals of the Kähler action [D1] suggests that for non-
vacuum extremals at astrophysical scales Kähler charge doesn’t depend on the properties of the
condensate and is apart from numerical constant equal to the gravitational mass of the system
using Planck mass as unit:

QK = ε1
Mgr

mproton
. (1)

The condition ε1√
αK

< 10−19 must hold true in astrophysical length scales since the long range gauge
force implied by the Kähler charge must be weaker than gravitational interaction at astrophysical
length scales. It is not clear whether the ’anomalous’ Kähler charge can correspond to a mere Z0

gauge or em charge or more general combination of weak charges.
Also for the imbedding of Schwartschild and Reissner-Nordström metrics as vacuum extremals

non-vanishing gravitational mass implies that some electro-weak gauge charges are non-vanishing
[D1]. For vacuum extremals with sin2(θW ) = 0 em field indeed vanishes whereas Z0 gauge field is
non-vanishing.

If one assumes that the weak charges are screened completely in electro-weak length scale, the
anomalous charge can be only electromagnetic if it corresponds to ordinary elementary particles.
This however need not be consistent with field equations. Perhaps the most natural interpretation
for the ”anomalous” gauge charges is due to the elementary charges associated with dark matter.
Since weak charges are expected to be screened in the p-adic length scale characterizing weak
boson mass scale, the implication is that scaled down copies of weak bosons with arbitrarily small
mass scales and arbitrarily long range of interaction are predicted. Also long ranged classical color
gauge fields are unavoidable which forces to conclude that also a hierarchy of scaled down copies
of gluons exists.
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One can hope that photon and perhaps also Z0 and color gauge charges in Cartan algebra could
be quantized classically at elementary particle length scale (p ≤ M127, say) and electromagnetic
gauge charge in all length scales apart from small renormalization effects. One of the reasons is
that classical electromagnetic fields make an essential part in the description of, say, hydrogen
atom.

The study of the extremals of Kähler action and of the imbeddings of spherically symmetric
metrics [D3, D1] shows that the imbeddings are characterized by frequency type vacuum quantum
numbers, which allow to fix these charges to pre-determined values. The minimization of Kähler
action for a space-time surface containing a given 3-surface leads to the quantization of the vacuum
parameters and hopefully to charge quantization. This motivates the hypothesis that the electro-
magnetic charges associated with the classical gauge fields of topologically condensed elementary
particles are equal to their quantized counterparts. The discussion of dark matter leads to the
conclusion that electro-weak and color gauge charges of dark matter can be non-vanishing [J6, F9].

2.1.4 Equivalence Principle as duality between super-canonical and Super Kac-Moody
conformal algebras

A precise formulation of Equivalence Principle came from a deeper mathematical understanding of
the relationship between super-canonical (SC) and Super Kac-Moody (SKM) symmetries which
has been one of the central themes in the development of TGD. The progress in the understanding
of the number theoretical aspects of TGD [E2] gives good hopes of lifting SKMV (V denotes
Virasoro) to a subalgebra of SCV so that coset construction works meaning that the differences
of SCV and SKMV generators annihilate physical states. This condition has interpretation in
terms of Equivalence Principle with coset Super Virasoro conditions defining a generalization of
Einstein’s equations in TGD framework. Rather concretely: the actions of the imbedding space
Dirac operator associated with the generator G0 in for SC and SKM degrees of freedom are iden-
tical so that SKM and SC four-momenta and color quantum numbers identifiable as gravitational
and inertial variants of these quantum numbers can be identified. Also p-adic thermodynamics
finds a justification since the expectation values of SKM conformal weights can be non-vanishing
in physical states.

2.2 The identification of Higgs as a weakly charged wormhole contact

Quantum classical correspondence suggests that electro-weak massivation should have simple
space-time description allowing also to identify Higgs boson if it exists. This description indeed
exists and allows also to understand the precise relationship between gravitational and inertial
masses and how Equivalence Principle is weakened in TGD framework.

The basic observation is that gauge and gravitational fluxes flow to larger space-time sheets
through # (wormhole) contacts. If gravitational energy can be regarded in the Newtonian limit as
a gauge charge, the contacts feed the gravitational energy regarded as a gauge flux to the lower con-
densate levels. The non-conservation of gravitational gauge flux means that # contacts can carry
gravitational four-momentum. Since CP2 type vacuum extremals are the natural candidates for #
contacts, the natural hypothesis is that the non-vanishing light-like gravitational four-momentum
of # contacts is responsible for the non-conservation of gravitational four-momentum flux. The
non-conservation of the light-like gravitational four-momentum of CP2 type extremals is in turn
responsible for the non-conservation of the net gravitational four-momentum.

# contacts can be also carriers of inertial four-momentum which must be conserved in absence
of four-momentum exchange between environment and wormhole contact. Therefore Equivalence
Principle cannot hold true in strict sense. Equivalence Principle is satisfied in a weak sense if the
inertial four-momentum is equal to the average four-momentum associated with the zitterbewegung
motion and corresponds to the center of mass motion for the # contact.
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The non-conservation of weak gauge currents for CP2 type extremals implies a non-conservation
of weak charges and the finite range of weak forces. If wormhole contacts correspond to pieces
of CP2 type vacuum extremal, electro-weak gauge currents are not conserved classically unlike
color and Kähler current. The non-conservation of weak isospin corresponds to the presence of
pairs of right/left handed fermion and left/right handed antifermion at wormhole contacts. These
wormhole contacts are excellent candidates for the TGD counterpart of Higgs boson providing the
most natural mechanism for the massivation of weak bosons. The finding that that CP2 parts
of the induced gamma matrices connect different M4 chiralities of induced spinor fields provided
the original motivation for the belief that Higgs mechanism is realized in some manner in TGD
Universe. This coupling must be crucial for the formation of weakly charged wormhole contacts.

There are two contributions to the mass of elementary particle corresponding to the primary
and secondary topological condensation.

1. The dominant contribution to the fermion masses would be due to p-adic thermodynamics
describing primary topological condensation. If weak form of Equivalence Principle holds
true, inertial mass would result simply as the average of non-conserved light-like gravita-
tional four-momentum. This contribution to the inertial mass is generated in the topological
condensation of CP2 type extremal representing elementary particle involving only single
light like elementary particle horizon, say fermion, and by randomness of the zitterbewegung
corresponds naturally to the contribution given by p-adic thermodynamics.

2. For gauge bosons the contribution from primary condensation should be very small or van-
ishing if the radius of zitterbewegung orbit is larger than the size of the space-time sheet
containing the topologically condensed boson so that the motion is along a light-like geodesic
in a good approximation. The space-time sheet representing massless state suffered sec-
ondary topologically condensation at a larger space-time sheet and viewed as a particle can
develop mass via Higgs mechanism since wormhole contacts cannot be regarded as moving
along light like geodesics in the length and time scale involved. # contacts carrying net left
handed weak isospin have interpretation as TGD counterparts of neutral Higgs bosons and
the formation of a coherent state involving superposition of states with varying number of
wormhole contacts corresponds to the generation of a vacuum expectation value of Higgs
field.

2.3 General mass formula

One of the blessings of effective 2-dimensionality is that one can treat different 2-surfaces X2
i as

almost independent degrees of freedom. In the case of translations this is not true since independent
translations lead the surfaces X2 outside δM4

± × CP2. Therefore one must consider two options.

1. If one neglects the correlation between the translations and assigns to each X2
i independent

translational degrees of freedom a separate mass formula for each X2
i would result:

M2
i = −

∑

i

L0i(SKM) +
∑

i

L0i(SC) . (2)

Here L0i(SKM) contains a CP2 cm term giving the CP2 contribution to the mass squared
known once the spinorial partial waves associated with super generators used to construct
the state are known.

2. Perhaps the only internally consistent option is based on the assignment of the mass squared
with the total cm. This would give
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M2 = (
∑

i

pi)2 =
∑

i

M2
i + 2

∑

i 6=j

pi · pj = −
∑

i

L0i(SKM) +
∑

i

L0i(SC) .

(3)

Here L0i(SKM) contains a CP2 cm term giving the CP2 contribution to the mass squared
known once the spinorial partial waves associated with super generators used to construct
the state are known. L0(SC) term contains only leptonic or quark oscillator operators unless
one allows both the lepto-quark type gamma matrices involving both D+ and D−1

− and
leptonic gamma matrices involving instead of D±1

± the projector P to the spinor modes with
a non-vanishing eigenvalue of D.

The decomposition of the net four momentum to a sum of individual momenta can be regarded
as subjective unless there is a manner to measure the individual masses. It might be that there
is no unique assignment of momenta to individual partons and that this non-uniqueness is part of
the gauge symmetry implied by 7–3 duality.

2.3.1 Mass squared as a thermal expectation of super Kac-Moody conformal weight

The general view about particle massivation is based on the generalized coset construction allowing
to understand the p-adic thermal contribution to mass squared as a thermal expectation value of the
conformal weight for super Kac-Moody Virasoro algebra (SKMV ) or equivalently super-camonical
Virasoro algebra (SCV ). Conformal invariance holds true only for the generators of the differences
of SKMV and SCV generators. In the case of SCV and SKMV only the generators Ln, n > 0,
annihilate the physical states. Obviously the actions of super-canonical Virasoro (SCV) generators
and Super Kac-Moody Virasoro generators on physical states are identical. The interpretation is
in terms of Equivalence Principle.

1. Super-Kac Moody conformal weights must be negative for elementary fermions and this can
be understood if the real parts of fermionic conformal weights are equal to -1/2 as required
by the scaling invariance of integration measures associated with the light-like coordinate of
light-cone boundary.

2. Ground state with negative confromal is generated by applying SC generators (Hamiltoni-
ans and their super counterparts) with conformal weights −1/2 + iy plus SKM generators.
Massless state annihilated by Ln, n > 0 is is obtained from this by applying Super generators.

3. Massless state is thermalized with respect to SKMV with thermal excitations created by
generators Ln, n > 0.

2.3.2 Mass formula for bound states of partons

The coefficient of proportionality between mass squared and conformal weight can be deduced
from the observation that the mass squared values for CP2 Dirac operator correspond to definite
values of conformal weight in p-adic mass calculations. It is indeed possible to assign to partonic
2-surface X2 CP2 partial waves correlating strongly with the net electro-weak quantum numbers
of the parton so that the assignment of ground state conformal weight to CP2 partial waves makes
sense. In the case of M4 degrees of freedom it is not possible to talk about momentum eigen states
since translations take parton out of δH+ so that momentum must be assigned with the tip of the
light-cone containing the particle.
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The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑

i

pi)2 =
∑

i

m2
i (4)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the QCD
based model of hadrons only longitudinal momenta and transverse momentum squared are used
as labels of parton states, which would suggest that one has

p2
i,|| = m2

i ,

−
∑

i

p2
i,⊥ + 2

∑

i,j

pi · pj = 0 . (5)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why massive

quarks can behave as nearly massless quarks inside hadrons.

2.4 Is also Higgs contribution expressible as p-adic thermal expectation?

The consideration of [A9] concerning explicit microscopic structure of dark variants of elementary
particles allow to add some details to the general picture about particle massivation reducing
to p-adic thermodynamics plus Higgs mechanism, both of them having description in terms of
conformal weight.

2.4.1 General picture

1. The mass squared equals to the p-adic thermal average of the conformal weight. There are
two contributions to this thermal average. One from the p-adic thermodynamics for super
conformal representations, and one from the thermal average related to the spectrum of
generalized eigenvalues λ of the modified Dirac operator D. Higgs expectation value appears
in the role of a mass term in the Dirac equation just like λ in the modified Dirac equation.
For the zero modes of D λ vanishes.

2. There are good motivations to believe that λ is expressible as a superposition of zeros of
Riemann zeta or some more general zeta function. The problem is that λ is complex. Since
Dirac operator is essentially the square root of d’Alembertian (mass squared operator), the
natural interpretation of λ would be as a complex ”square root” of the conformal weight.

Remark: The earlier interpretation of λ as a complex conformal weight looks rather stupid in
light of this observation.

This encourages to consider the interpretation in terms of vacuum expectation of the square
root of Virasoro generator, that is generators G of super Virasoro algebra, or something analogous.
The super generators G of the super-conformal algebra carry fermion number in TGD framework
where Majorana condition does not make sense physically. The modified Dirac operators for the
two possible choices t± of the light-like vector appearing in the eigenvalue equation DΨ = λtk±ΓkΨ
could however define a bosonic algebra resembling super-conformal algebra. In fact, the operators
a± = λtk±Γk are nilpotent and anti-commute to λ so that the minimal super-algebra would be
3-dimensional.

The p-adic thermal expectation values of contractions of tk−γkD+ and tk+γkD− should co-incide
with the vacuum expectations of Higgs and its conjugate. Note that D+ and D− would be same
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operator but with different definition of the generalized eigenvalue and hermitian conjugation would
map these two kinds of eigen modes to each other. The real contribution to the mass squared would
thus come naturally as 〈|λ|2〉. Of course, 〈H〉 = 〈λ〉 is only a hypothesis encouraged by the internal
consistency of the physical picture, not a proven mathematical fact.

2.4.2 Questions

This leaves still some questions.

1. Does the p-adic thermal expectation 〈λ〉 dictate 〈H〉 or vice versa? Physically it would be
rather natural that the presence of a coherent state of Higgs wormhole contacts induces
the mixing of the eigen modes of D. On the other hand, the quantization of the p-adic
temperature Tp suggests that Higgs vacuum expectation is dictated by Tp.

2. Also the phase of 〈λ〉 should have physical meaning. Could the interpretation of the imaginary
part of 〈λ〉 make possible the description of dissipation at the fundamental level?

3. Is p-adic thermodynamics consistent with the quantal description as a coherent state? The
approach based on p-adic variants of finite temperature QFTs associate with the legs of
generalized Feynman diagrams might resolve this question neatly since thermodynamical
states would be genuine quantum states in this approach made possible by zero energy
ontology.

3 Could also gauge bosons correspond to wormhole con-
tacts?

The developments in the formulation of quantum TGD which have taken place during the period
2005-2007 [C1, C2, C3] suggest dramatic simplifications of the general picture discussed in the ear-
lier version of this chapter. p-Adic mass calculations [F3, F4, F5] leave a lot of freedom concerning
the detailed identification of elementary particles. The basic open question is whether the theory is
free at parton level as suggested by the recent view about the construction of S-matrix and by the
almost topological QFT property of quantum TGD at parton level [C2, C3]. Or more concretely:
do partonic 2-surfaces carry only free many-fermion states or can they carry also bound states of
fermions and anti-fermions identifiable as bosons? If the theory is free at parton level, no bi-local
composites of second quantized induced spinor field would be needed in the construction of the
quantum states and this would simply the theory enormously.

What is known that Higgs boson corresponds naturally to a wormhole contact. The wormhole
contact connects two space-time sheets with induced metric having Minkowski signature. Worm-
hole contact itself has an Euclidian metric signature so that there are two wormhole throats which
are light-like 3-surfaces and would carry fermion and anti-fermion number in the case of Higgs.
Irrespective of the identification of the remaining elementary particles MEs (massless extremals,
topological light rays) would serve as space-time correlates for elementary bosons. Higgs type
wormhole contacts would connect MEs to the larger space-time sheet and the coherent state of
neutral Higgs would generate gauge boson mass and could contribute also to fermion mass.

The basic question is whether this identification applies also to gauge bosons (certainly not to
graviton). This identification would imply quite a dramatic simplification since the theory would
be free at single parton level and the only stable parton states would be fermions and anti-fermions.
As will be found this identification allows to understand the dramatic difference between graviton
and other gauge bosons and the weakness of gravitational coupling, gives a connection with the
string picture of gravitons, and predicts that stringy states are directly relevant for nuclear and
condensed matter physics as has been proposed already earlier [F8, J1, J2]. In order to avoid
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confusion it must be emphasized that this picture is not consistent with the older picture discussed
above.

3.1 Option I: Only Higgs as a wormhole contact

The only possibility considered hitherto has been that elementary bosons correspond to partonic
2-surfaces carrying fermion-anti-fermion pair such that either fermion or anti-fermion has a non-
physical polarization. For this option CP2 type extremals condensed on MEs and travelling with
light velocity would serve as a model for both fermions and bosons. MEs are not absolutely
necessary for this option. The couplings of fermions and gauge bosons to Higgs would be very
similar topologically. Consider now the counter arguments.

1. This option fails if the theory at partonic level is free field theory so that anti-fermions and
elementary bosons cannot be identified as bound states of fermion and anti-fermion with
either of them having non-physical polarization.

2. Mathematically oriented mind could also argue that the asymmetry between Higgs and el-
ementary gauge bosons is not plausible whereas asymmetry between fermions and gauge
bosons is. Mathematician could continue by arguing that if wormhole contacts with net
quantum numbers of Higgs boson are possible, also those with gauge boson quantum num-
bers are unavoidable.

3. Physics oriented thinker could argue that since gauge bosons do not exhibit family replication
phenomenon (having topological explanation in TGD framework) there must be a profound
difference between fermions and bosons.

3.2 Option II: All elementary bosons as wormhole contacts

The hypothesis that quantum TGD reduces to a free field theory at parton level is consistent with
the almost topological QFT character of the theory at this level. Hence there are good motivations
for studying explicitly the consequences of this hypothesis.

3.2.1 Elementary bosons must correspond to wormhole contacts if the theory is free
at parton level

Also gauge bosons could correspond to wormhole contacts connecting MEs [D1] to larger space-
time sheet and propagating with light velocity. For this option there would be no need to assume
the presence of non-physical fermion or anti-fermion polarization since fermion and anti-fermion
would reside at different wormhole throats. Only the definition of what it is to be non-physical
would be different on the light-like 3-surfaces defining the throats.

The difference would naturally relate to the different time orientations of wormhole throats
and make itself manifest via the definition of light-like operator o = xkγk appearing in the gener-
alized eigenvalue equation for the modified Dirac operator [B4, C1]. For the first throat ok would
correspond to a light-like tangent vector tk of the partonic 3-surface and for the second throat to
its M4 dual t̂k in a preferred rest system in M4 (implied by the basic construction of quantum
TGD). What is nice that this picture non-asks the question whether tk or t̂k should appear in the
modified Dirac operator.

Rather satisfactorily, MEs (massless extremals, topological light rays) would be necessary for
the propagation of wormhole contacts so that they would naturally emerge as classical correlates of
bosons. The simplest model for fermions would be as CP2 type extremals topologically condensed
on MEs and for bosons as pieces of CP2 type extremals connecting ME to the larger space-time
sheet. For fermions topological condensation is possible to either space-time sheet.
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3.2.2 What about light-like boundaries and macroscopic wormhole contacts?

Light-like boundaries of the space-time sheet can have macroscopic size and can carry free many-
fermion states but not elementary bosons. Number theoretic braids and anyons might be assignable
to these structures. Deformations of cosmic strings to magnetic flux tubes with a light-like outer
boundary are especially interesting in this respect.

If the ends of a string like object move with light velocity as implied by the usual stringy
boundary conditions they indeed define light-like 3-surfaces. Many-fermion states could be assigned
at the ends of string. One could also connect in pairwise manner the ends of two time-like strings
having opposite time orientation using two space-like strings so that the analog of boson state
consisting of two wormhole contacts and analogous to graviton would result. ”Wormhole throats”
could have arbitrarily long distance in M4.

Wormhole contacts can be regarded as slightly deformed CP2 type extremals only if the size
of M4 projection is not larger than CP2 size. The natural question is whether one can construct
macroscopic wormhole contacts at all.

1. The throats of wormhole contacts cannot belong to vacuum extremals. One might how-
ever hope that small deformations of macrosopic vacuum extremals could yield non-vacuum
wormhole contacts of macroscopic size.

2. A large class of macroscopic wormhole contacts which are vacuum extremals consists of
surfaces of form X2

1 × X2
2 ⊂ (M1 × Y 2) × E3, where Y 2 is Lagrangian manifold of CP2

(induced Kähler form vanishes) and M4 = M1 × E3 represents decomposition of M1 to
time-like and space-like sub-spaces. X2

2 is a stationary surface of E3. Both X2
1 ⊂ M1 ×CP2

and X2
2 have an Euclidian signature of metric except at light-like boundaries X1

a ×X2
2 and

X1
b ×X2

2 defined by ends of X2
1 defining the throats of the wormhole contact.

3. This kind of vacuum extremals could define an extremely general class of macroscopic worm-
hole contacts as their deformations. These wormhole contacts describe an interaction of
wormhole throats regarded as closed strings as is clear from the fact that X2 can be visual-
ized as an analog of closed string world sheet X2

1 in M1 × Y 2 describing a reaction leading
from a state with a given number of incoming closed strings to a state with a given number of
outgoing closed strings which correspond to wormhole throats at the two space-time sheets
involved.

3.2.3 Phase conjugate states and matter- antimatter asymmetry

By fermion number conservation fermion-boson and boson-boson couplings must involve the fusion
of partonic 3-surfaces along their ends identified as wormhole throats. Bosonic couplings would
differ from fermionic couplings only in that the process would be 2 → 4 rather than 1 → 3 at the
level of throats.

The decay of boson to an ordinary fermion pair with fermion and anti-fermion at the same
space-time sheet would take place via the basic vertex at which the 2-dimensional ends of light-like
3-surfaces are identified. The sign of the boson energy would tell whether boson is ordinary boson
or its phase conjugate (say phase conjugate photon of laser light) and also dictate the sign of the
time orientation of fermion and anti-fermion resulting in the decay.

The two space-time sheets of opposite time orientation associated with bosons would naturally
serve as space-time correlates for the positive and negative energy parts of the zero energy state
and the sign of boson energy would tell whether it is phase conjugate or not. In the case of
fermions second space-time sheet is not absolutely necessary and one can imagine that fermions in
initial/final states correspond to single space-time sheet of positive/negative time orientation.
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Also a candidate for a new kind interaction vertex emerges. The splitting of bosonic wormhole
contact would generate fermion and time-reversed anti-fermion having interpretation as a phase
conjugate fermion. This process cannot correspond to a decay of boson to ordinary fermion pair.
The splitting process could generate matter-antimatter asymmetry in the sense that fermionic
antimatter would consist dominantly of negative energy anti-fermions at space-time sheets having
negative time orientation [D5, D6].

This vertex would define the fundamental interaction between matter and phase conjugate
matter. Phase conjugate photons are in a key role in TGD based quantum model of living matter.
This involves model for memory as communications in time reversed direction, mechanism of
intentional action involving signalling to geometric past, and mechanism of remote metabolism
involving sending of negative energy photons to the energy reservoir [K1]. The splitting of wormhole
contacts has been considered as a candidate for a mechanism realizing Boolean cognition in terms
of ”cognitive neutrino pairs” resulting in the splitting of wormhole contacts with net quantum
numbers of Z0 boson [J3, M6].

3.3 Graviton and other stringy states

Fermion and anti-fermion can give rise to only single unit of spin since it is impossible to assign
angular momentum with the relative motion of wormhole throats. Hence the identification of
graviton as single wormhole contact is not possible. The only conclusion is that graviton must be
a superposition of fermion-anti-fermion pairs and boson-anti-boson pairs with coefficients deter-
mined by the coupling of the parton to graviton. Graviton-graviton pairs might emerge in higher
orders. Fermion and anti-fermion would reside at the same space-time sheet and would have a
non-vanishing relative angular momentum. Also bosons could have non-vanishing relative angular
momentum and Higgs bosons must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-vanishing gauge fluxes so
that the throats of wormhole contacts are connected by flux tubes carrying the gauge flux. The
mechanism producing gravitons would the splitting of partonic 2-surfaces via the basic vertex. A
connection with string picture emerges with the counterpart of string identified as the flux tube
connecting the wormhole throats. Gravitational constant would relate directly to the value of the
string tension.

The TGD view about coupling constant evolution [C5] predicts G ∝ L2
p, where Lp is p-adic

length scale, and that physical graviton corresponds to p = M127 = 2127− 1. Thus graviton would
have geometric size of order Compton length of electron which is something totally new from the
point of view of usual Planck length scale dogmatism. In principle an entire p-adic hierarchy of
gravitational forces is possible with increasing value of G.

The explanation for the small value of the gravitational coupling strength serves as a test for
the proposed picture. The exchange of ordinary gauge boson involves the exchange of single CP2

type extremal giving the exponent of Kähler action compensated by state normalization. In the
case of graviton exchange two wormhole contacts are exchanged and this gives second power for
the exponent of Kähler action which is not compensated. It would be this additional exponent that
would give rise to the huge reduction of gravitational coupling strength from the naive estimate
G ∼ L2

p.
Gravitons are obviously not the only stringy states. For instance, one obtains spin 1 states

when the ends of string correspond to gauge boson and Higgs. Also non-vanishing electro-weak
and color quantum numbers are possible and stringy states couple to elementary partons via
standard couplings in this case. TGD based model for nuclei as nuclear strings having length of
order L(127) [F8] suggests that the strings with light M127 quark and anti-quark at their ends
identifiable as companions of the ordinary graviton are responsible for the strong nuclear force
instead of exchanges of ordinary mesons or color van der Waals forces.
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Also the TGD based model of high Tc super-conductivity involves stringy states connecting the
space-time sheets associated with the electrons of the exotic Cooper pair [J1, J2]. Thus stringy
states would play a key role in nuclear and condensed matter physics, which means a profound
departure from stringy wisdom, and breakdown of the standard reductionistic picture.

3.4 Spectrum of non-stringy states

The 1-throat character of fermions is consistent with the generation-genus correspondence. The
2-throat character of bosons predicts that bosons are characterized by the genera (g1, g2) of the
wormhole throats. Note that the interpretation of fundamental fermions as wormhole contacts
with second throat identified as a Fock vacuum is excluded.

The general bosonic wave-function would be expressible as a matrix Mg1,g2 and ordinary gauge
bosons would correspond to a diagonal matrix Mg1,g2 = δg1,g2 as required by the absence of neutral
flavor changing currents (say gluons transforming quark genera to each other). 8 new gauge bosons
are predicted if one allows all 3 × 3 matrices with complex entries orthonormalized with respect
to trace meaning additional dynamical SU(3) symmetry. Ordinary gauge bosons would be SU(3)
singlets in this sense. The existing bounds on flavor changing neutral currents give bounds on
the masses of the boson octet. The 2-throat character of bosons should relate to the low value
T = 1/n ¿ 1 for the p-adic temperature of gauge bosons as contrasted to T = 1 for fermions.

If one forgets the complications due to the stringy states (including graviton), the spectrum
of elementary fermions and bosons is amazingly simple and almost reduces to the spectrum of
standard model. In the fermionic sector one would have fermions of standard model. By simple
counting leptonic wormhole throat could carry 23 = 8 states corresponding to 2 polarization states,
2 charge states, and sign of lepton number giving 8+8=16 states altogether. Taking into account
phase conjugates gives 16+16=32 states.

In the non-stringy boson sector one would have bound states of fermions and phase conjugate
fermions. Since only two polarization states are allowed for massless states, one obtains (2+1)×(3+
1) = 12 states plus phase conjugates giving 12+12=24 states. The addition of color singlet states
for quarks gives 48 gauge bosons with vanishing fermion number and color quantum numbers.
Besides 12 electro-weak bosons and their 12 phase conjugates there are 12 exotic bosons and their
12 phase conjugates. For the exotic bosons the couplings to quarks and leptons are determined by
the orthogonality of the coupling matrices of ordinary and boson states. For exotic counterparts
of W bosons and Higgs the sign of the coupling to quarks is opposite. For photon and Z0 also the
relative magnitudes of the couplings to quarks must change. Altogether this makes 48+16+16=80
states. Gluons would result as color octet states. Family replication would extend each elementary
boson state into SU(3) octet and singlet and elementary fermion states into SU(3) triplets.

3.5 Higgs mechanism

Consider next the generation of mass as a vacuum expectation value of Higgs when also gauge
bosons correspond to wormhole contacts. The presence of Higgs condensate should make the
simple rectilinear ME curved so that the average propagation of fields would occur with a velocity
less than light velocity. Field equations allow MEs of this kind as solutions [D1].

The finite range of interaction characterized by the gauge boson mass should correlate with the
finite range for the free propagation of wormhole contacts representing bosons along corresponding
ME. The finite range would result from the emission of Higgs like wormhole contacts from gauge
boson like wormhole contact leading to the generation of coherent states of neutral Higgs particles.
The emission would also induce non-rectilinearity of ME as a correlate for the recoil in the emission
of Higgs.

Higgs expectation should have space-time correlate appearing in the modified Dirac operator.
A good candidate is p-adic thermal average for the generalized eigenvalue λ of the modified Dirac
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operator vanishing for the zero modes. Thermal mass squared as opposed to Higgs contribution
would correspond to the average of integer valued conformal weight. For bosons (in particular
Higgs boson!) it is simply the sum of expectations for the two wormhole throats.

Both contributions are basically thermal which raises the question whether the interpretation
in terms of coherent state of Higgs field (and essentially quantal notion) is really appropriate unless
also thermal states can be regarded as genuine quantum states. The matrix characterizing time-like
entanglement for the zero energy quantum state can be also thermal S-matrix with respect to the
incoming and outgoing partons (hyper-finite factors of type III allow the analog of thermal QFT at
the level of quantum states. This allows also a first principle description of p-adic thermodynamics.

4 Does the modified Dirac action define the fundamental
action principle?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the modified Dirac action is an excellent candidate in this respect.

4.1 Modified Dirac equation

In the following the problems of the ordinary Dirac action are discussed and the notion of modified
Dirac action is introduced. In particular, the following problems are discussed.

1. Try to guess general formula for the spectrum of the modified Dirac operator and for super-
canonical conformal weights by assuming that the eigenvalues are expressible in terms of the
data assignable to the two kinds of of number theoretical braids and that the product of
vacuum functional expressible as exponent of Kahler function and of the exponent of Chern-
Simons action is identifiable as Dirac determinant expressible as product of M4 and CP2

parts. Since Kähler function is isometry invariant only the Dirac determinant defined by
M4 braid can contribute to it. Chern-Simons action is not isometry invariant and can be
identified as the Dirac determinant associated with CP2 braid.

2. Try to understand whether the zeta functions involved can be identified as Riemann Zeta
or some zeta coding geometric data about partonic 2-surface. Try to understand whether
the assignment of a fixed prime p to a partonic 2-surface implies that the zeta function is
actually an analog for basic building block of Riemann Zeta.

4.1.1 Problems associated with the ordinary Dirac action

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diago-
nal components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that min-
imal surface property plus extremization of Kähler action could really boil down to the absolute
minimization of Kähler action or a more general principle selecting preferred extremals as Bohr
orbits [E2].
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This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors is
consistent with the super-symmetry of the configuration space geometry. Super-symmetry would
obviously require that for vacuum extremals of Kähler action also induced spinor fields represent
vacua. This is however not the case. This super-symmetry is however assumed in the construction
of the configuration space geometry so that there is internal inconsistency.

4.1.2 Super-symmetry forces modified Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DαTα
k = 0 ,

Tα
k =

∂

∂hk
α

LK . (6)

If super-symmetry is present one can assign to this current its super-symmetric counterpart

Jαk = νRΓkTα
l ΓlΨ ,

DαJαk = 0 . (7)

having a vanishing covariant divergence. The isometry currents currents and super-currents are
obtained by contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also
that the super current

Jα = νRTα
l ΓlΨ (8)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-

gence of the super current reduces to

DαJαk = νRΓkTα
l ΓlDαΨ .

(9)

The requirement that this current vanishes is guaranteed if one assumes that modified Dirac
equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tα
l Γl . (10)
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This equation must be derivable from a modified Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (11)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with effective induced gamma matrices and the requirement

DµΓ̂µ = 0 (12)

guaranteing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

4.1.3 How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface property as a
consequence of field equations. It is not induced metric which appears in field equations. Rather,
the effective n metric appearing in the field equations is defined by the anti-commutators of γ̂µ

ĝµν = {Γ̂µ, Γ̂ν} = 2T k
µ Tνk . (13)

Here the index raising and lowering is however performed by using the induced metric so that
the problems resulting from the non-invertibility of the effective metric are avoided. It is this
dynamically generated effective metric which must appear in the number theoretic formulation of
the theory.

Field equations state that space-time surface is minimal surface with respect to the effective
metric. Note that a priori the choice of the bosonic action principle is arbitrary. The requirement
that effective metric defined by energy momentum tensor has only non-diagonal components except
in the case of non-light-like coordinates, is satisfied for the known solutions of field equations.

4.1.4 Does the modified Dirac action define the fundamental action principle?

There is quite fundamental and elegant interpretation of the modified Dirac action as a fundamental
action principle discussed also in [E2]. In this approach vacuum functional can be defined as the
Grassmannian functional integral associated with the exponent of the modified Dirac action. This
definition is invariant with respect to the scalings of the Dirac action so that theory contains no
free parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that
the Dirac determinant exponent of Kähler function for a preferred Bohr orbit like extremal of the
Kähler action with the value of Kähler coupling strength coming out as a prediction. Hence the
dynamics of the modified Dirac action at light-like partonic 3-surfaces X3

l , even when restricted to
almost-topological dynamics induced by Chern-Simons action, would dictate the dynamics at the
interior of the space-time sheet.

The knowledge of the canonical currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents SA and SB associated with Hamiltonians HA and
HB anti-commute to a bosonic current H[A,B], allows in principle to deduce the anti-commutation
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relations satisfied by the induced spinor field. In fact, these conditions replace the usual anti-
commutation relations used to quantize free spinor field. Since the normal ordering of the Dirac
action would give Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation relations
of the super-canonical algebra. Kähler coupling strength would be dynamical and the selection
of preferred extremals of Kähler action would be more or less equivalent with quantum criticality
because criticality corresponds to conformal invariance and the hyper-quaternionic version of the
super-conformal invariance results only for the extrema of Kähler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come out as a prediction
whereas in the case that Kähler action is introduced as primary object, the value of Kähler coupling
strength must be fixed by quantum criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the
space-time surfaces which are deformations of M4 indeed contain a small contribution from CP2

gamma matrices: this implies a mixing of M4 chiralities even for the modified Dirac action so that
there is no need to introduce this mixing by hand.

4.2 The association of the modified Dirac action to Chern-Simons action
and explicit realization of super-conformal symmetries

Super Kac-Moody symmetries should correspond to solutions of modified Dirac equation which
are in some sense holomorphic. The discussion below is based on the same general ideas but differs
radically from the previous picture at the level of details. The additional assumption inspired
by the considerations of this section is that the action associated with the partonic 3-surfaces is
non-singular and therefore Chern-Simons action for the induced Kähler gauge potential.

This means that TGD is at the fundamental level almost-topological QFT: only the light-
likeness of the partonic 3-surfaces brings in the induced metric and gravitational and gauge inter-
actions and induces the breaking of scale and super-conformal invariance. The resulting theory
possesses the expected super Kac-Moody and super-canonical symmetries albeit in a more general
form than suggested by the considerations of this section. A connection of the spectrum of the
modified Dirac operator with the zeros or Riemann Zeta is suggestive and provides support for
the earlier number theoretic speculations concerning the spectrum of super-canonical conformal
weights. One can safely say, that if this formulation is correct, TGD could not differ less from a
physically trivial theory.

4.2.1 Zero modes and generalized eigen modes of the modified Dirac action

Consider net the zero modes and generalized eigen modes for the modified Dirac operator.

1. The modified gamma matrices appearing in the modified Dirac equation are expressible in
terms of the Lagrangian density L assignable to the light-like partonic 3-surface X43l as

Γ̂α =
∂L

∂αhk
Γk , (14)

where Γk denotes gamma matrices of imbedding space. The modified Dirac operator is
defined as

D = Γ̂αDα , (15)
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where Dα is the covariant derivative defined by the induced spinor connection. Modified
gamma matrices satisfy the condition

DαΓ̂α = 0 (16)

if the field equations associated with L are satisfied. This guarantees that one indeed obtains
the analog of the massless Dirac equation. Zero modes of the modified Dirac equation should
define the conformal super-symmetries.

2. The generalized eigenvalues and eigen solutions of the modified Dirac operator are defined
as

DΨ = λNΨ ,

N = nkΓk .

(17)

Here nk denotes a light-like vector which must satisfy the integrability condition

[
D, nkΓk

]
= 0 . (18)

if the analog D2Ψ = 0 for the square of massless Dirac equation is to hold true. nk should be
determined by the field equations associated with L somehow and commutativity condition
could fix n more or less uniquely.

If the commutativity condition holds true then any generalized eigen mode Ψλ gives rise to
a zero mode as Ψ = NΨλ. One can add to a given non-zero mode any superposition of zero
modes without affecting the generalized eigen mode property.

The commutativity condition can be satisfied if the tangent space at each point of X4 contains
preferred plane M2 guaranteing HO − H duality and having interpretation as a preferred
plane of non-physical polarizations. In this case n can be chosen to be constant light-like
vector in M2.

3. The hypothesis is that Kähler function is expressible in terms of the Dirac determinant of
the modified Dirac operator defined as the product of the generalized eigenvalues. The Dirac
determinant must carry information about the interior of the space-time surface determined
as preferred extremal of Kähler action or (as the hypothesis goes) as hyper-quaternionic or co-
hyper-quaternionic 4-surface of M8 defining unique 4-surface of M4×CP2. The assumption
that X3

L is light-like brings in an implicit dependence on the induced metric. The simplest
but non-necessary assumption is that nk is a light-like vector field tangential to X3

l so that
the knowledge of X3

l fixes completely the dynamics.

4. If the action associated with the partonic light-like 3-surfaces contains induced metric, the
field equations become singular and ill-defined unless one defines the field equations at X3

l via
a limiting procedure and poses additional conditions on the behavior of Ψ at X3

l . Situation
changes if the action does not contain the induced metric. The classical field equations are
indeed well-defined at light-like partonic 3-surfaces for Chern-Simons action for the induced
Kähler gauge potential
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L = LC−S = kεαβγJαβAγ . (19)

One obtains the analog of WZW model with gauge field replaced with the induced Kähler
form. This action does not depend on the induced metric explicitly so that in this sense a
topological field theory results. There is no dependence on M4 gamma matrices so that local
Lorentz transformations act as super-conformal symmetries of both classical field equations
and modified Dirac equation and SL(2, C) defines the analog of the SU(2) Kac-Moody
algebra for N = 4 SCA.

The facts that the induced metric is light-like for X3
l , that the modified Dirac equation contains

information about this and therefore about induced metric, and that Dirac determinant is the
product of the non-vanishing eigen values of the modified Dirac operator, imply the failure of
topological field theory property at the level of Kähler function identified as the logarithm of the
Dirac determinant.

A more complicated option would be that the modified Dirac action contains also interior term
corresponding to the Kähler action. This alternative would break super-conformal symmetries
explicitly and almost-topological QFT property would be lost. This option is not consistent with
the idea that quantum-classical correspondence relates the partonic dynamics at X3

l with the
classical dynamics in the interior of space-time providing first principle justification for the basic
assumptions of the quantum measurement theory.

The classical field equations defined by LC−S read as

Dµ
∂LC−S

∂µhk
= 0 ,

∂LC−S

∂µhk
= εµαβ

[
2Jkl∂αhlAβ + JαβAk)

]
. (20)

From the explicit form of equations it is obvious that the most general solution corresponds to a
X3

l with at most 2-dimensional CP2 projection.
Although C-S action vanishes, the color isometry currents are in general non-vanishing. One

can assign currents also to super-Kac Moody and super-canonical transformations using standard
formulas and the possibility that the corresponding charges define configuration space Hamiltonians
and their super-counterparts must be considered seriously.

Suppose that the CP2 projection is 2-dimensional and not a Lagrange manifold. One can
introduce coordinates for which the coordinates for X2 are same as those for CP2 projection. For
instance, complex coordinates (z, z) of a geodesic sphere could be used as local coordinates for
X2. One can also assign one M4 coordinate, call it r, with M4 projection X1 of X3

l . Locally
this coordinate can be taken to be one of the standard M4 coordinates. The remaining five H-
coordinates can be expressed in terms of (r, z, z) and light-likeness condition boils down to the
vanishing of the metric determinant:

det(g3) = 0 . (21)

All diffeomorphisms of H respecting the light-likeness condition are symmetries of the solution
ansatz.

Consider some special cases serve as examples.
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1. The simplest situation results when X4
l is of form X1 ×X2, where X1 is light-like random

curve in M4 as for CP2 type vacuum extremals. In this case light-likeness boils down to
Virasoro conditions with real parameter r playing the role analogous to that of a complex
coordinate: this conformal symmetry is dynamical and must be distinguished from conformal
symmetries assignable to X2. A plausible guess is that light-likeness condition quite generally
reduces to the classical Virasoro conditions.

2. A solution in which CP2 projection is dynamical is obtained by assuming that for a given
value of M4 time coordinate CP2- and M4- projections are one-dimensional curves. For
instance, CP2 projection could be the circle Θ = Θ(m0 ≡ t) whereas M4 projection could
be the circle ρ =

√
x2 + y2 = ρ(m0). Light-likeness condition reduces to the condition

gtt = 1−R2∂tΘ2 − ∂tρ
2 = 0.

4.2.2 Classical field equations for the modified Dirac equation defined by Chern-
Simons action

The modified Dirac operator is given by

D =
∂LC−S

∂µhk
ΓkDµ

= εµαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDµ ,

ε̂αβγ = εαβγ√g3 . (22)

Note ε̂αβγ = does not depend on the induced metric. The operator is non-trivial only for 3-
surfaces for which CP2 projection is 2-dimensional non-Lagrangian sub-manifold. The modified
Dirac operator reduces to a one-dimensional Dirac operator

D = ε̂rαβ
[
2Jkl∂αhlAβ + JαβAk

]
ΓkDr . (23)

The solutions of the modified Dirac equation are obtained as spinors which are covariantly constant
with respect to the coordinate r:

DrΨ = 0 . (24)

Non-vanishing spinors Ψ1 = ∂rΨ satisfying ΓrΨ1 = 0 are not possible. Ψ defines super-symmetry
for the generalized eigen modes if the additional condition

Ψ = NΨ0 (25)

is satisfied. The interpretation as super-conformal symmetries makes sense if the Fourier coeffi-
cients of zero modes and their conjugates are anticommuting Grassmann numbers. The zero modes
which are not of this form do not generate super-conformal symmetries and might correspond to
massless particles. TGD based vision about Higgs mechanism suggest the interpretation of nk as a
non-conserved gravitational four-momentum whose time average defines inertial four-momentum of
parton. The sum of the partonic four-momenta would be identified as the classical four-momentum
associated with the interior of the space-time sheet.

The covariant derivatives Dα involve only CP2 spinor connection and the metric induced from
CP2. Dr involves CP2 spinor connection unless X3

l is of form X1 ×X2 ⊂ M4 × CP2. The eigen
modes of D correspond to the solutions of
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DΨ = λNΨ (26)

The first guess is that N = nkγk corresponds to the tangential light-like vector nk = Φ∂rh
k

where Φ is a normalization factor which can depend on position.
The obvious objection is that with this assumption it is difficult to understand how Dirac

determinant can correspond to an absolute extremum of Kähler action for 4-D space-time sheet
containing partonic 3-surfaces as causal determinants (

√
g4 = 0). However, if one can select a

unique M4 time coordinate, say as that associated with the rest system for the average four-
momentum defined as Chern-Simons Noether charge, then one can assign to nk a unique dual
obtained by changing the sign of its spatial components. The condition that this vector is tangential
to the 4-D space-time sheet would provide information about the space-time sheet and bring in
4-dimensionality. At this stage one must however leave the question about the choice of nk open.

One should be able to fix Φ apart from overall normalization. First of all, the requirement that
zero modes defines super symmetries implies the condition [D, nkΓk]Ψ = 0 for zero modes. This
condition boils down to the requirement

Dr(Φ∂rh
kΓk)Ψ = 0 . (27)

This in turn boils down to a condition

Dr∂rh
k +

∂rΦ
Φ

∂rh
k = 0 . (28)

These conditions in turn guarantee that the condition

Dr(hkl∂rh
k∂rh

l) = 0 (29)

implied by the light-likeness condition are satisfied. Since Φ is determined apart from a multiplica-
tive constant from the light-likeness condition the system is internally consistent. The conditions
above are not general coordinate invariant so that the coordinate r must correspond to a physically
preferred coordinate perhaps defined by the conditions above.

One can express the eigenvalue equation in the form

∂rΨ = λOΨ ,

O = (Γ̂r)−1N ,

(Γ̂r)−1 =
Γ̂r

akalhkl
, Γ̂r ≡ akΓk . (30)

This equation defines a flow with r in the role of a time parameter. The solutions of this equation
can be formally expressed as

Ψ(r, z, z) = Peλ
∫

O(r,z,z)drΨ0(z, z) . (31)

Here P denotes the ordered exponential needed because the operators O(r, zz) need not commute
for different values of r.
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4.2.3 Can one allow light-like causal determinants with 3-D CP2 projection?

The standard quantum field theory wisdom would suggest that light-like partonic 3-surfaces which
are extremals of the Chern-Simons action correspond only to what stationary phase approximation
gives when vacuum functional is the product of exponent of Kähler function resulting from Dirac
determinant and an imaginary exponent of Chern-Simons action whose coefficient is proportional
to the central charge of Kac-Moody algebras associated with CP2 degrees of freedom.

One cannot exclude the possibility that 3-D light-like causal determinants might be required
by the general consistency of the theory. The identification of the exponent of Kähler function
as Dirac determinant remains a viable hypothesis for this option. ”Off mass shell” breaking of
super-conformal symmetries is implied since modified Dirac equation implies the conservation of
super conformal currents only when CP2 projection is at most 2-dimensional.

4.2.4 Some problems of TGD as almost-topological QFT and their resolution

There are some problems involved with the precise definition of the quantum TGD as an almost-
topological QFT at the partonic level and the resolution of these problems leads to an unexpected
connection between cosmology and parton level physics.

1. Three problems

The proposed view about partonic dynamics is plagued by three problems.

1. The definition of supercanonical and super-Kac-Moody charges in M4 degrees of freedom
poses a problem. These charges are simply vanishing since M4 coordinates do not appear in
field equations.

2. Classical field equations for the C-S action imply that this action vanishes identically which
would suggest that the dynamics does not depend at all on the value of k. The central
extension parameter k determines the over-all scaling of the eigenvalues of the modified
Dirac operator. 1/k- scaling occurs for the eigenvalues so that Dirac determinant scales
by a finite power kN if the number N of the allowed eigenvalues is finite for the algebraic
extension considered. A constant Nlog(k) is added to the Kähler function and its effect
seems to disappear completely in the normalization of states.

3. The general picture about Jones inclusions and the possibility of separate Planck constants
in M4 and CP2 degrees of freedom suggests a close symmetry between M4 and CP2 degrees
of freedom at the partonic level. Also in the construction of the geometry for the world of
classical worlds the symplectic and Kähler structures of both light-cone boundary and CP2

are in a key role. This symmetry should be somehow coded by the Chern-Simons action.

2. A possible resolution of the problems

A possible cure to the above described problems is based on the modification of Kähler gauge
potential by adding to it a gradient of a scalar function Φ with respect to M4 coordinates.

1. This implies that super-canonical and super Kac-Moody charges in M4 degrees of freedom
are non-vanishing.

2. Chern-Simons action is non-vanishing if the induced CP2 Kähler form is non-vanishing. If
the imaginary exponent of C-S action multiplies the vacuum functional, the presence of the
central extension parameter k is reflected in the properties of the physical states.
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3. The function Φ could code for the value of k(M4) via a proportionality constant

Φ =
k(M4)
k(CP2)

Φ0 , (32)

Here k(CP2) is the central extension parameter multiplying the Chern-Simons action for CP2

Kähler gauge potential. This tricks does just what is needed since it multiplies the Noether
currents and super currents associated with M4 degrees of freedom with k(M4) instead of
k(CP2).

The obvious breaking of U(1) gauge invariance looks strange at first but it conforms with the
fact that in TGD framework the canonical transformations of CP2 acting as U(1) gauge symmetries
do not give to gauge degeneracy but to spin glass degeneracy since they act as symmetries of only
vacuum extremals of Kähler action.

3. How to achieve Lorentz invariance?

Lorentz invariance fixes the form of function Φ uniquely as the following argument demon-
strates.

1. Poincare invariance would be broken in any case for a given light-cone in the decomposition
CH = ∪mCHm of the configuration space to sub-configuration spaces associated with light-
cones at various locations of M4 but since the functions Φ associated with various light cones
would be related by a translation, translation invariance would not be lost.

2. The selection of Φ should not break Lorentz invariance. If Φ depends on the Lorentz proper
time a only, this is partially achieved. Momentum currents would be proportional to mk

and become light like at the boundary of the light-cone. This fits very nicely with the
interpretation that the matter emanates from the tip of the light cone in Robertson-Walker
cosmology.

Lorentz invariance poses even stronger conditions on Φ.

1. Partonic four-momentum defined as Chern-Simons Noether charge is definitely not conserved
and must be identified as gravitational four-momentum whose time average corresponds
to the conserved inertial four-momentum assignable to the Kähler action [D3, D5]. This
identification is very elegant since also gravitational four-momentum is well-defined although
not conserved.

2. Lorentz invariance implies that mass squared is constant of motion. Hence it is interesting
to look what expression for Φ results if the gravitational mass defined as Noether charge for
C-S action is conserved. The components of the four-momentum for Chern-Simons action
are given by

P k =
∂LC−S

∂(∂αa)
mkl∂mla .

Chern-Simons action is proportional to Aα = Aa∂αa so that one has

P k ∝ ∂aΦ∂mka = ∂aΦ
mk

a
.
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The conservation of gravitational mass gives Φ ∝ a. Since CP2 projection must be 2-
dimensional, M4 projection is 1-dimensional so that mass squared is indeed conserved.

Thus one could write

Φ =
k(M4)
k(CP2)

xθ(a)
a

R
, (33)

where R the radius of geodesic sphere of CP2 and x a numerical constant which could be
fixed by quantum criticality of the theory. Chern-Simons action density does not depend
on a for this choice and this independence guarantees that the earlier ansatz satisfies field
equations. The presence of the step function θ(a) tells that Φ is non-vanishing only inside
light-cone and gives to the gauge potential delta function term which is non-vanishing only
at the light-cone boundary and makes possible massless particles.

3. If M4 projection is 1-dimensional, only homologically charged partonic 3-surfaces can carry
gravitational four-momentum. This is not a problem since M4 projection can be 2-dimensional
in the general case. For CP2 type extremals, ends of cosmic strings, and wormhole contacts
the non-vanishing of homological charge looks natural. For wormhole contacts 3-D CP2 pro-
jection suggests itself and is possible only if one allows also quantum fluctuations around
light-like extremals of Chern-Simons action. The interpretation could be that for a vanishing
homological charge boundary conditions force X4 to approach vacuum extremal at partonic
3-surfaces.

This picture does not fit completely with the picture about particle massivation provided by
CP2 type extremals. Massless partons must correspond to 3-surfaces at light-cone boundary in
this picture and light-likeness allows only linear motion so that inertial mass defined as average
must vanish.

5. Comment about quantum classical correspondence

The proposed general picture allows to define the notion of quantum classical correspondence
more precisely. The identification of the time average of the gravitational four-momentum for
C-S action as a conserved inertial four-momentum associated with the Kähler action at a given
space-time sheet of a finite temporal duration (recall that we work in the zero energy ontology) is
the most natural definition of the quantum classical correspondence and generalizes to all charges.

In this framework the identification of gravitational four-momentum currents as those associ-
ated with 4-D curvature scalar for the induced metric of X4 could be seen as a phenomenological
manner to approximate partonic gravitational four-momentum currents using macroscopic cur-
rents, and the challenge is to demonstrate rigorously that this description emerges from quantum
TGD.

For instance, one could require that at a given moment of time the net gravitational four-
momentum of Int(X4) defined by the combination of the Einstein tensor and metric tensor equals
to that associated with the partonic 3-surfaces. This identification, if possible at all, would certainly
fix the values of the gravitational and cosmological constants and it would not be surprising if
cosmological constant would turn out to be non-vanishing.

4.2.5 The eigenvalues of D as complex square roots of conformal weight and connec-
tion with Higgs mechanism?

An alternative interpretation for the eigenvalues of D emerges from the TGD based description of
particle massivation. The eigenvalues could be interpreted as complex square roots of conformal
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weights in the sense that |λ|2 would have interpretation as a conformal weight. There is of course
the possibility of numerical constant of proportionality.

The physical motivation for the interpretation is that λ is in the same role as the mass term
in the ordinary Dirac equation and thus indeed square root of mass squared proportional to the
conformal weight. The vacuum expectation of Higgs would correspond to that for λ and Higgs
contribution to the mass squared would correspond to the p-adic thermodynamical expectation
value 〈|λ|2〉 [A9]. Additional contributions to mass squared would come from super conformal and
modular degrees of freedom. The interpretation of the generalized eigenvalue as a Higgs field is
also natural because the generalized eigen values of the modified Dirac operator can depend on
position.

4.2.6 Super-conformal symmetries

The topological character of the solutions spectrum makes possible the expected and actually
even larger conformal symmetries in X2 degrees of freedom. Arbitrary diffeomorphisms of CP2,
including local SU(3) and its holomorphic counterpart, act as symmetries of the non-vacuum
solutions. Also the canonical transformations of CP2 inducing a U(1) gauge transformation are
symmetries. More generally, the canonical transformations of δM4

± × CP2 define configuration
space symmetries.

Diffeomorphisms of M4 respecting the light-likeness condition define Kac-Moody symmetries.
In particular, holomorphic deformations of X3

l defined in E2 factor of M2 × E2 compensated
by a hyper-analytic deformation in M2 degrees taking care that light-likeness is not lost, act as
symmetry transformations. This requires that M2 and E2 contributions of the deformation to the
induced metric compensate each other.

The fact that the modified Dirac equation reduces to a one-dimensional Dirac equation allows
the action of Kac-Moody algebra as a symmetry algebra of spinor fields. In M4 degrees of freedom
X2-local SL(2,C) acts as super-conformal symmetries and extends the SU(2) Kac-Moody algebra
of N = 4 super-conformal algebra to SL(2, C). The reduction to SU(2) occurs naturally. These
symmetries act on all spinor components rather than on the second spinor chirality or right handed
neutrinos only. Also electro-weak U(2) acts as X2-local Kac-Moody algebra of symmetries. Hence
all the desired Kac-Moody symmetries are realized.

The action of Super Kac-Moody symmetries corresponds to the addition of a linear combination
of zero modes of D to a given eigen mode. This defines a symmetry if zero modes satisfy the
additional condition NΨ = 0 implied by Ψ = NΨ0 in turn guaranteed by the already described
conditions. These symmetries are super-conformal symmetries with respect to z and z.

The radial conformal symmetries generalize the dynamical conformal symmetries characterizing
CP2 type vacuum extremals and could be regarded as dynamical conformal symmetries defining the
spectrum of super-canonical conformal weights assigned originally to the radial light-like coordinate
of δM4

±. It deserves to be emphasized that the topological QFT character of TGD at fundamental
level broken only by the light-likeness of X3

l carrying information about H metric makes possible
these symmetries.

N = 4 super-conformal symmetry corresponding to the maximal representation with the group
SU(2)×SU(2)×U(1) acting as rotations and electro-weak symmetries on imbedding space spinors
is in question. This symmetry is broken for light-like 3-surfaces not satisfying field equations. It
seems that rotational SU(2) can be extended to the full Lorentz group.

4.2.7 How the super-conformal symmetries of TGD relate to the conventional ones?

The representation of super-symmetries as an addition of anticommuting zero modes to the second
quantized spinor field defined by the superposition of non-zero modes of the modified Dirac equation
differs radically from the standard realization based on the replacement of the world sheet or target
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space coordinates with super-coordinates. Also the fundamental role of the generalized eigen modes
of the modified Dirac operator is something new and absolutely essential for the understanding of
how super-conformal invariance is broken: the breaking of super-symmetries is indeed the basic
problem of the super-string theories.

Since the spinor fields in question are not Majorana spinors the standard super-field formalism
cannot work in TGD context. It is however interesting to look to what extent this formalism
generalizes and whether it allows some natural modification allowing to formally integrate the
notions of the bosonic action and corresponding modified Dirac action.

1. One can consider the formal introduction of super fields by replacing of X3
l coordinates by

super-coordinates requiring the introduction of anti-commuting parameters θ and θ trans-
forming as H-spinors of definite chirality, which is not consistent with Majorana condition.
Using real coordinates xα for X3

l , one would have

xα → Xα = xα + θΓ̂αΨ + ΨΓ̂αθ ,

Super-conformal symmetries would add to θ a zero mode with Grassmann number valued
coefficient. The replacement zα → Xα for the arguments of CP2 and M4 coordinates would
super-symmetrize the field C-S action density. As a matter fact, the super-symmetrization
is non-trivial only in radial degree of freedom since only Γ̂r is non-vanishing.

2. Also imbedding space coordinates could be formally replaced with super-fields using a similar
recipe and super-symmetries would act on them. The topological character of Chern-Simons
action would allow the super-symmetries induced by the translation of θ by an anticom-
muting zero mode as formal symmetries at the level of the imbedding space. In both cases
it is however far from clear whether the formal super-symmetrization has any real physical
meaning.

3. The notion of super-surface suggests itself and would mean that imbedding space Θ param-
eters are functions of single θ parameter assignable with X3

l . A possible representation of
super-part of the imbedding is a generalization of ordinary imbedding in terms of constraints
Hi)(hk) = 0, i = 1, 2.... Symmetries allow only linear functions so that one would have

cα
i)(r, z, z)Θα = 0 .

A hyper-plane in the space of theta parameters is obtained. Since only single theta parameter
is possible in integral the number of constraints is seven and one obtains the modified Dirac
action from the super-space imbedding.

Consider next the basic difficulty and its resolution.

1. The super-conformal symmetries do not generalize to the level of action principle in the
standard sense of the word and the reason is the failure of the Majorana property forced
by the separate conservation of quark and lepton numbers so that the standard super-space
formalism remains empty of physical content.

2. One can however consider the modification of the integration measure
∏

i dθidθi over Grass-
mann parameters by replacing the product of bilinears with

dθγ1dθdθγ2dθ...
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analogous to the product dx1 ∧ dx2... (where γk would be gamma matrices of the imbedding
space) transforming like a pseudoscalar. It seems that the replacement of product with wedge
product leads to a trivial theory. This formalism could work for super fields obeying Weyl
condition instead of Majorana condition and it would be interesting to find what kind of
super-symmetric field theories it would give rise to.

The requirement that the number of Grassmann parameters given by 2D is the number of
spinor components of definite chirality (counting also conjugates) given by 2× 2D/2−1 gives
critical dimension D = 8, which suggest that this kind of quantum field theory might exist.
As found, the zero modes which are not of form Ψ = NΨ0 do not generate super-conformal
symmetries in the strict sense of the word and might correspond to light particles. One
could ask whether chiral SUSY in M4 × CP2 might describe the low energy dynamics of
corresponding light parton states. General arguments do not however support space-time
super-symmetry.

3. Because of the light-likeness the super-symmetric variant of C-S action should involve the
modified gamma matrices Γ̂α instead of the ordinary ones. Since only Γ̂r is non-vanishing
for the extremals of C-S action and since super-symmetrization takes place for the light-
like coordinate r only, the integration measure must be defined as dθΓ̂rdθ, with θ perhaps
assignable to a fixed covariantly constant right-handed neutrino spinor and Γ̂r the inverse of
Γ̂r. This action gives rise to the modified Dirac action with the modified gamma matrices
emerging naturally from the Taylor expansion of the C-S action in powers of super-coordinate.

4.3 Why the cutoff in the number superconformal weights and modes
of D is needed?

Two kinds of cutoffs are necessary in the number theoretic approach involving a hierarchy of
algebraic extensions of rationals with increasing algebraic dimension.

4.3.1 Spatial cutoff realized in terms of number theoretical braids

The first cutoff corresponds to a spatial discretization selecting a subset of algebraic points of the
partonic 2-surface X2 as a subset of the points common to the real and p-adic variants of X2

obeying the same algebraic equations. Almost topological field theory property allows to assume
algebraic equations and also quantum criticality and generalization of the imbedding space concept
are crucial for achieving the cutoff as a completely inherent property of X2.

4.3.2 Cutoff in the number of super-canonical conformal weights

It is not quite clear whether the number of radial conformal weights should be finite or not.
The assumption HFF property is realized also in configuration space degrees of freedom would
motivate finiteness for the number of conformal weights and would effectively replace the world
of the classical worlds with a finite-D space. Also super-symmetry suggests the same. Finiteness
would be guaranteed if the ζ function involved characterizes partonic 2-surface and is labelled by
p-adic prime: this would also guarantee that zeros of ζ are algebraic numbers. If the zeta function
in question characterizes the spectrum of modified Dirac operator and the number of eigenvalues
is finite then this goal is achieved. In the case of Riemann Zeta one would be forced to use cutoff
due related to the algebraic extension of p-adic numbers used and to assume that zeros and even
more general arguments are algebraic numbers.
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4.3.3 Cutoff in the number of generalized eigenvalues of the modified Dirac operator

Second cutoff corresponds to a cutoff in the number of generalized eigenvalues of the modified
Dirac operator and also now almost TQFT provides the needed flexibility.

1. If the generalized eigenvalues are interpreted as Higgs field then the number of eigenvalues
is just one and also orthogonality condition for the modes is achieved without posing ad hoc
correlations between longitudinal and transversal degrees of freedom.

2. A priori the dependence of the eigenmodes on transversal degrees of freedom of X2 is arbi-
trary. This looks strange on basis of experience with quantum field theory and would imply
non-stringy anti-commutation relations. Holomorphic dependence however leads to stringy
anti-commutations.

3. Anti-commutativity at braid points only would be highly satisfactory since it would allow to
avoid delta functions but would require that the transverse degrees of freedom reduce to a
finite number of modes. The reduction of this cutoff to inherent properties of X2 remains
to be understood. What is clear is that the number of conformal modes in transversal
degrees of freedom corresponds essentially to the number of points in the braid and the
precise realization of this cutoff remains to be understood. Since this cutoff relates to finite
measurement resolution, the idea that non-commutative S2

II coordinates provides an elegant
manner to realize the anti-commutativity at finite number of points.

It is natural to choose the modes to be S2
II partial waves with a well defined color isospin

quantum numbers I, I3. The Abelianity of the color holonomy group of induced spinor connection
suggests also color confinement in weak sense meaning vanishing of I3 and Y for the physical states.

Since cutoff hierarchy must relate closely to the hierarchy of quantum phases, it seems natural
to assume that for given value of q = exp(i2π/nb) only the angular momentum values I ≤ nb

are allowed. Here nb is the order of the maximal cyclic subgroup of Gb involved with the Jones
inclusion. In the similar manner one can introduce cutoff for S2 partial waves in δM4

± as cutoff
l ≤ nb for angular momentum. Both cutoffs are needed in the definition of configuration space
Hamiltonians and super-Hamiltonians allowing to approximate configuration space with a finite-
dimensional space which is obviously in spirit with the hyper-finiteness.

Cutoffs imply that n-point functions are finite and non-trivial since the anticommutators of
second quantized induced spinor fields are non-local and delta function singularity is smoothed
out. Non-locality implies that vertices are non-trivial and pair creation becomes possible. It is of
course essential that the dynamics of the space-time interior induces correlations between different
partonic 2-surfaces.

That this picture can give rise to the basic vertices of quantum theory seems clear. For instance,
suppose that bosons can be assigned to the fermionic representation of Hamiltonians and fermions
by super Hamiltonians. The idea would be that right handed neutrino represents vacuum state to
which imbedding space gamma matrices act like creation operators. The vertex for the emission of
boson would involve sum of vacuum expectation values for the product of the operators ΨJAΨ(x),
νJBΨ(y) ΨJCν(z), JA = jk

AΓk with various choices of arguments. Anticommutation relations
would give sum over the values of the quantity νJA(x)JB(y)JC(z)ν multiplied by ”wave functions”
coming the modes of Ψ. Summation would be over the discrete set of points of the number
theoretical braid. A discretized version of stringy scattering amplitude would be in question.

4.3.4 Attempt to form an overall view

This approach leads to both a hierarchy of discretized theories and continuum theory. Continuum
theory indeed seems to be completely well defined and would correspond to string theory with free
fermions with N = 4 super-conformal symmetry as far vertices are considered.
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The interpretation encouraged by Jones inclusion hierarchy is that the limit n →∞ for quantum
phase q = exp(i2π/n) is not equivalent with the exact real theory based on stringy amplitudes
defined using 1-D integrals over the inverse image of the image of the critical line. The natural
interpretation for the stringy option without discretization could be in terms of Jones inclusions
with group SU(2) and classified by extended ADE diagrams relating to the monodromies of the
theory. This interpretation would also conform with the full Kac-Moody invariance whereas for
quantum version infinite-dimensional symmetries are reduced to finite-dimensional ones. Note that
quantum trace should be equivalent with the condition that the trace of the unit matrix is unity
for hyper-finite factors of type II1.

The number theoretic cutoff hierarchy for the allowed zeros of ζ relates closely to the hierarchy
of finite-dimensional extensions of p-adic numbers and to the quantum criticality realized in terms
of the generalized imbedding space. This hierarchy of extensions defines a hierarchy of number
theoretic braids with an increasing number of strands since the number of points in the intersection
between real and corresponding p-adic surface increases and does also the number of allowed zeros.
Also the hierarchy of finite-dimensional approximations for the inclusions of hyperfinite factors of
type II1 can be visualized in terms of a hierarchy of braid inclusions with increasing number
of braids and is described in terms of Temperley-Lieb algebras. This hierarchy of approximate
representations of the inclusion means the replacement of the Beraha number Bn = 4cos2(π/n) by
a rational number defining the ratio of dimensions of two subsequent finite-dimensional algebras in
the hierarchy. Hence the number theoretic braid hierarchy could provide a concrete representation
for the hierarchy of approximations for the hyper-finite factors of type II1 and their Jones inclusions
in terms of inclusions of Temperley Lieb algebras assignable to the number theoretic braids. Physics
itself would define this sequence of approximations via p-adicization which basically means space-
time realization of cognitive representations.

4.4 The spectrum of Dirac operator and radial conformal weights from
physical and geometric arguments

The identification of the generalized eigenvalues of the modified Dirac operator as Higgs field
suggests the possibility of understanding the spectrum of D purely geometrically by combining
physical and geometric constraints.

The standard zeta function associated with the eigenvalues of the modified Dirac action is the
best candidate concerning the interpretation of super-canonical conformal weights as zeros of ζ.
This ζ should have very concrete geometric and physical interpretation related to the quantum
criticality if these eigenvalues have geometric meaning based on geometrization of Higgs field.

Before continuing it its convenient to introduce some notations. Denote the complex coordinate
of a point of X2 w, its H = M4 × CP2 coordinates by h = (m, s), and the H coordinates of its
R+ × S2

II projection by hc = (r+, sII).

4.4.1 Generalized eigenvalues

The generalized eigenvalue equation defined by the modified Dirac equation is a differential equa-
tion involving only the derivative with respect to r. Hence the eigenvalues λ can depend on X2

coordinate w and on the coordinates of the critical manifold R+ × S2
II via the dependence of

w these. As a function of R+ × S2
II coordinates they would be many-valued functions of these

coordinates since several points of X2 can project at given point of R+ × S2
II .

The replacement of the ordinary eigenvalues with continuous functions would be a space-time
analog for generalized eigenvalues identified as Hermitian operators (or equivalently, their spectra)
inspired by the quantum measurement theory based on inclusions of hyper-finite factors of type
II1 [A8]. The replacement of these functions with their values in a discrete set defined by number
theoretic braid would in turn be the counterpart for the finite measurement resolution.
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The interpretation of eigenvalue as a complex Higgs field gives the most concrete interpretation
for the generalized eigenvalues. Of course, only single eigenvalue would be realized in this kind
of situation. Also the requirement that different modes are orthogonal with respect to the inner
product at the partonic 2-surface allows only single generalized eigenvalue. Hence the modes in
transversal degrees of freedom would code for physics as in the usual QFT.

This interpretation does not kill the idea about eigenvalues as inverses of zeta function λ =
ζ−1(z), S2

II . The point is that one can regard X2 as a covering of S2 and assign different branches
of ζ−1 to the different sheets of covering. Different branches of ζ−1(z), call them ζ−1

k (z), would
combine to single function of the coordinate w of X2. In the case of Riemann zeta the corresponding
construction would replaced complex plane with its infinite-fold covering.

4.4.2 General definition of Dirac determinant

The first guess is that Dirac determinant can defined as a product of determinants assignable to
the points z = zk of the number theoretic braids:

det(D) =
∏

zk)

det(D(zk)) . (34)

The determinant det(D(z)) at point z of S2 would be defined as the product of the eigenvalues
λ(z) at points associated with the number theoretic braids.

det(D)(zk) =

[∏

i

ζ−1
i (zk)

]n(zk)

, (35)

n(zk) is the number of strands in the number theoretical braid of associated with zk. Higgs
interpretation would imply that only single value of Higgs contributes for a given point of X2.
Dirac determinant must be an algebraic number. This is the case if the total number of points of
number theoretic braids involved is finite. It turns out that this guess is quite not general enough:
it turns out that actual Dirac determinant must be identified as a ratio of two determinants.

4.4.3 Interpretation of eigenvalues of D as Higgs field

The eigenvalues of the modified Dirac operator have a natural interpretation as Higgs field which
vanishes for the unstable extrema of Higgs potential. These unstable extrema correspond naturally
to quantum critical points resulting as intersection of M4 resp. CP2 projection of the partonic 2-
surface X2 with R+ resp. S2

II .
Quantum criticality suggests that the counterpart of Higgs potential could be identified as the

modulus square of ζ:

V (H(s)) = −|H(s)|2 . (36)

which indeed has the points s with V (H(s)) = 0 as extrema which would be unstable in accordance
with quantum criticality. The fact that for ordinary Higgs mechanism minima of V are the impor-
tant ones raises the question whether number theoretic braids might more naturally correspond to
the minima of V rather than intersection points with S2. This turns out to be the case. It will also
turn out that the detailed form of Higgs potential does not matter: the only thing that matters is
that |V | is monotonically decreasing function of the distance from the critical manifold.
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4.4.4 Purely geometric interpretation of Higgs

Geometric interpretation of Higgs field suggests that critical points with vanishing Higgs correspond
to the maximally quantum critical manifold R+×S2

II . The value of H should be determined once
h(w) and R+ × S2

II projection hc(w) are known. |H| should increase with the distance between
these points. The question is whether one can assign to a given point pair (h(w), hc(w)) naturally
a value of H. The first guess is that value of H is most determined by the shortest piece of the
geodesic line connecting the points which is a product of geodesics of δM4

+ and CP2.
This guess need not be quite correct. An alternative guess is that M4 projection is indeed

geodesic but that CP2 projection extremizes its length subject to the constraint that the absolute
value of the phase defined by the one-dimensional Kähler action

∫
Aµdxµ is minimized: this point

will be discussed below.
The value should be in general complex and invariant under the isometries of δH affecting h

and hc. The minimal distance d(h, hc) between the two points constrained by extremal property
of phase would define the first candidate for the modulus of H.

The phase factor should relate close to the Kähler structure of CP2 and one possibility would
be the non-integrable phase factor U(s, sII) defined as the integral of the induced Kähler gauge
potential along the geodesic line in question. Hence the first guess for the Higgs would be as

H(w) = d(h, hc)× U(s, sII) ,

d(h, hc) =
∫ hc

h

ds , U(s, sII) = exp

[
i

∫ s1

s

Akdsk

]
. (37)

This gives rise to a holomorphic function in X2 the local complex coordinate of X2 is identified
as w = d(h, hs)U(s, sII) so that one would have H(w) = w locally. This view about H would be
purely geometric.

One can ask whether one should include to the phase factor also the phase obtained using
the Kähler gauge potential associated with S2

r having expression (Aθ, Aφ) = (k, cos(θ)) with k
even integer from the requirement that the non-integral phase factor at equator has the same
value irrespective of whether it is calculated with respect to North or South pole. For k = 0 the
contribution would be vanishing. The value of k might correlate directly with the value of quantum
phase. The objection against inclusion of this term is that Kähler action defining Kähler function
should contain also M4 part if this term is included. If this inclusion is allowed then internal
consistency requires also the extremization of

∫
Aµdxµ so that geodesic lines are not allowed.

In each coordinate patch Higgs potential could be simply the quadratic function V = −ww.
Negative sign is required by quantum criticality. As noticed any monotonically increasing function
of V works as well since the minima of the potential remain unaffected. Potential could indeed
have minima as minimal distance of X2 point from R+ × S2

II . Earth’s surface with zeros as tops
of mountains and bottoms of valleys as minima would be a rather precise visualization of the
situation for given value of r+. Mountains would have a shape of inverted rotationally symmetry
parabola in each local coordinate system.

4.4.5 Consistency with the vacuum degeneracy of Kähler action and explicit con-
struction of preferred extremals

An important constraint comes from the condition that the vacuum degeneracy of Kähler ac-
tion should be understood from the properties of the Dirac determinant. In the case of vacuum
extremals Dirac determinant should have unit modulus.

Suppose that the space-time sheet associated with the vacuum parton X2 is indeed vacuum
extremal. This requires that also X3

l is a vacuum extremal: in this case Dirac determinant must be
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real although it need not be equal to unity. The CP2 projection of the vacuum extremal belongs
to some Lagrangian sub-manifold Y 2 of CP2. For this kind of vacuum partons the ratio of the
product of minimal H distances to corresponding M4

± distances must be equal to unity, in other
words minima of Higgs potential must belong to the intersection X2 ∩ S2

II or to the intersection
X2∩R+ so that distance reduces to M4 or CP2 distance and Dirac determinant to a phase factor.
Also this phase factor should be trivial.

It seems however difficult to understand how to obtain non-trivial phase in the generic case for
all points if the phase is evaluated along geodesic line in CP2 degrees of freedom. There is however
no deep reason to do this and the way out of difficulty could be based on the requirement that
the phase defined by the Kähler gauge potential is evaluated along a curve either minimizing the
absolute value of the phase modulo 2π.

One must add the condition that curve is not shorter than the geodesic line between points.
For a given curve length s0 the action must contain as a Lagrange multiplier the curve length so
that the action using curve length s as a coordinate reads as

S =
∫

Asds + λ(
∫

ds− s0) . (38)

This gives for the extremum the equation of motion for a charged particle with Kähler charge
QK = 1/λ:

D2sk

ds2
+

1
λ
× Jk

l

dsl

ds
= 0 ,

D2mk

ds2
= 0 . (39)

The magnitude of the phase must be further minimized as a function of curve length s.
If the extremum curve in CP2 consists of two parts, first belonging to X2

II and second to Y 2,
the condition is certainly satisfied. Hence if X2

CP2
×Y 2 is not empty, the phases are trivial. In the

generic case 2-D sub-manifolds of CP2 have intersection consisting of discrete points (note again
the fundamental role of 4-dimensionality of CP2). Since S2

II itself is a Lagrangian sub-manifold,
it has especially high probably to have intersection points with S2

II . If this is not the case one can
argue that X3

l cannot be vacuum extremal anymore.
Radial conformal invariance of δM4

± raises the question whether δM4
± geodesics should be

defined by allowing rM (s) to be arbitrary rather than constant. The minimization of δM4
± distance

would favor geodesics for which rM (s) decreases as fast as possible so that one has a light-like
geodesics going directly to the tip of δM4

±. Therefore this option does not seem to work.
The construction gives also a concrete idea about how the 4-D space-time sheet X4(X3

l ) be-
comes assigned with X3

l . The point is that the construction extends X2 to 3-D surface by con-
necting points of X2 to points of S2

II using the proposed curves. This process can be carried out
in each intersection of X3

l and M4
+ shifted to the direction of future. The natural conjecture is

that the resulting space-time sheet defines the 4-D preferred extremum of Kähler action.
The most obvious objection is that this construction might not work for cosmic strings of form

X2 × S2
I , where S2

I is a homologically non-trivial geodesic sphere of CP2. In this case X2 would
correspond to string ends, copies of S2

I at different points of δM4
±. There seems to be however no

real problem. If S2
I ∩S2

II is not empty, the orbits representing motion in the induced Kähler gauge
field could simply define a flow at S2

I connecting the points of S2
I to one of the intersection points.

Since geodesic manifold is in question one expects that the orbits indeed belong to S2
I and cosmic

string is obtained. Also a flow with several sources and sinks is possible. Situation should be the
same for complex 2-sub-manifolds of CP2. The 3-D character of the resulting surface would be
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due to the fact that δM4
± projections of the orbits are not points. If the second end of the string is

at R+ string and has the same value of rM coordinate, single string would result. Otherwise one
would obtain two strings with second end point at R+ with the same value of rM .

4.4.6 About the definition of the Dirac determinant and number theoretic braids

The definition of Dirac determinant should be independent of the choice of complex coordinate
for X2 and local complex coordinate implied by the definition of Higgs is a unique choice for this
coordinate. The physical intuition based on Higgs mechanism suggests that apart from normal-
ization factor the Dirac determinant should be defined simply as product of the eigenvalues of D,
that is those of Higgs field, associated with the number theoretic braids.

If only single kind of braid is allowed then the minima of Higgs field define the points of the
braid very naturally. The points in R+ × S2

II cannot contribute to the Dirac determinant since
Higgs vanishes at the critical manifold. Note that at S2

II criticality Higgs values become real and
the exponent of Kähler action should become equal to one. This is guaranteed if Dirac determinant
is normalized by dividing it with the product of δM4

± distances of the extrema from R+. The value
of the determinant would equal to one also at the limit R+ × S2

II .
One would define the Dirac determinant as the product of the values of Higgs field over all

minima of local Higgs potential

det(D) =
∏

k H(wk)∏
k H0(wk)

=
∏

k

wk

w0
k

. (40)

Here w0
k are M4 distances of extrema from R+. Equivalently: one can identify the values of Higgs

field as dimensionless numbers wk/w0
k. The modulus of Higgs field would be the ratio of H and

M4
± distances from the critical sub-manifold. The modulus of the Dirac determinant would be the

product of the ratios of H and M4 depths of the valleys.
This definition would be general coordinate invariant and independent of the topology of X2.

It would also introduce a unique conformal structure in X2 which should be consistent with that
defined by the induced metric. Since the construction used relies on the induced metric this looks
natural. The number of eigen modes of D would be automatically finite and eigenvalues would
have purely geometric interpretation as ratios of distances on one hand and as masses on the other
hand. The inverse of CP2 length defines the natural unit of mass. The determinant is invariant
under the scalings of H metric as are also Kähler action and Chern-Simons action. This excludes
the possibility that Dirac determinant could also give rise to the exponent of the area of X2.

Number theoretical constraints require that the numbers wk are algebraic numbers and this
poses some conditions on the allowed partonic 2-surfaces unless one drops from consideration the
points which do not belong to the algebraic extension used.

4.4.7 About the detailed definition of number theoretic braids

Consider now the detailed definition of number theoretic braids. One can define a pile X2
t of

cross sections of X3
l ∩ (δM4

±,t × CP2), where δM4
±,t represents δM4

± shifted by t in a preferred
time direction defined by M2. In the same manner one can decompose M2 to a pile of light-like
geodesics R+,t defining the quantization axis of angular momentum. For each value of t one obtains
a collection of minima of the ”Higgs field” λt in 3-dimensional space R+,t×S2

II . The minima define
orbits γ(t): (r+,i(t), sII(t)) in M2 × S2

II space.
One can consider braidings (or more generally tangles, two minima can disappear in collision

or can be created from vacuum) both in X3
l and at the level of imbedding space.

1. Braids in X3
l
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A braid in X3
l is obtained by considering the fate of points of X2t = 0 in X3

l and by assigning a
braiding to the minima of Higgs field in X3

l . Also the field lines of Kähler magnetic field or of Kähler
gauge potential on X3

l going through the initial positions of Higgs minima can be considered. Since
the construction of the Higgs field involves induced Kähler gauge potential in an essential manner,
the braiding defined by the Kähler gauge potential could be consistent with the time evolution for
the positions of the minima of Higgs.

Recall that only topological rather than point-wise equivalence of the braids is required. It is
not clear how much these definition depend on the coordinates used for X3

l . For instance, could
one trivialize the braid by making a time dependent coordinate change for X2? This requires that
it is possible to define global time coordinate whose coordinate lines correspond to field lines. This
is possible only if the flow satisfies additional integrability conditions [D1].

2. Braidings defined by imbedding space projections

One can define braidings also by the projections to the heavenly spheres S2
II of CP2 and S2

r of
δM4

±. A linear braid like structure is also obtained by considering the projections of Higgs minima
in M2.

1. The simplest option is the identification of the braid as the projections of the orbits of the
minima of Higgs field to S2

II or S2
r (for various values of t). This seems to be the most

elegant choice. One could decompose the braid to sub-braids such that each initial value
r+,i(0) would define its own braid in S2

II or S2
r . Also each point of S2

II or S2
r could define its

own sub-braid.

2. Factoring quantum field theories defined in M2 [25, 26] suggest a further definition of a braid
like structure based on the projections of Higgs minima to M2. The braid like structure
would result from the motion of braid points with different velocities so that they would pass
by each other. This kind of pattern with constant velocities of particles describes scattering
in factoring quantum field theories defined in M2. The M2 velocities of particles would not
be constant now. S-matrix is almost trivial inducing only a permutation of the initial state
momenta and S-matrix elements are mere phases. The interpretation is that each pass-by
process induces a time lag. At the limit when the velocities approach to zero or infinity such
that their ratios remain constant, S-matrix reduces to a braiding S-matrix.

The Higgs minima contributing to the elements of S-matrix (or at least U-matrix) should
correspond to algebraic points of braids. This suggests that the information about the braids
comes from the minima of Higgs in X3

l rather than X2
t so that only some values of t at each strand

γ(t) give rise to physically relevant braid points. The condition that the resulting numbers are
algebraic poses restrictions on X3

l as does also the condition that X3
l have also p-adic counterparts.

This does not of course mean the loss of braids. Note that the discretization allows to assign Dirac
determinant and zeta function to any 3-surface X3

l rather than only those corresponding to the
maxima of Kähler function.

4.4.8 The identification of zeta function

The proposed picture supports the identification of the eigenvalues of D in terms of a Higgs fields
having purely geometric meaning. It also seems that number theoretic braids must be identified
as minima of Higgs potential in X2. Furthermore, the braiding operation could be defined for all
intersections of X3

l defined by shifts M4
± as orbits of minima of Higgs potential. Second option is

braiding by Kähler magnetic flux lines.
The question is how to understand super-canonical conformal weights for which the identifica-

tion as zeros of a zeta function of some kind is highly suggestive. The natural answer would be
that the normalized eigenvalues of D defines this zeta function as
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ζ(s) =
∑

k

(
H(wk)
H0(wk)

)−s . (41)

The number of eigenvalues contributing to this function would be finite and H(wk)/H0(wk) should
be rational or algebraic at most. ζ function would have a precise meaning consistent with the usual
assignment of zeta function to Dirac determinant.

The case of Riemann Zeta inspires the question whether one should allow only the moduli of
the eigenvalues in the zeta or allow only real and positive eigenvalues. The moduli of eigenvalues
are not smaller than unity as is the case also for Riemann Zeta. Real eigenvalues correspond to
vanishing phase and thus vanishing Chern-Simons action and unit eigenvalues to the quantum
critical points of S2

II .
The ζ function would directly code the basic geometric properties of X2 since the moduli of the

eigenvalues characterize the depths of the valleys of the landscape defined by X2 and the associated
non-integrable phase factors. The degeneracies of eigenvalues would in turn code for the number
of points with same distance from a given zero intersection point.

The zeros of the ζ function in turn define natural candidates for the super-canonical conformal
weights and their number would thus be finite in accordance with the idea about inherent cutoff
present also in configuration space degrees of freedom. Super-canonical conformal weights would
be functionals of X2. The scaling of λ by a constant depending on p-adic prime factors out from the
zeta so that zeros are not affected: this is in accordance with the renormalization group invariance
of both super-canonical conformal weights and Dirac determinant.

The zeta function should exist also in p-adic sense. This requires that the numbers λs at
the points s of S2

II which corresponds to the number theoretic braid are algebraic numbers. The
freedom to scale λ could help to achieve this.

The conformal weights defined by the zeros of zeta would be constant. One could however
consider also the generalization of the super-canonical conformal weights to functions of S2

II or S2
r

coordinate although this is not necessary and would spoil the simple group theoretical properties
of the δH Hamiltonians. The coordinate s appearing as the argument of ζ could be formally
identified as S2

II or S2
r coordinate so that generalized super-canonical conformal weights could be

interpreted geometrically as inverses of ζ−1(s) defined as a function in S2
II or S2

r .
In this case also the notion of number theoretic braids defined as sets of points for which X2

M4

projection intersects R+ at same point could make sense for super-canonical conformal weights.
This would require that the number for the branches of ζ−1 is same as the number of points of
braid.

4.4.9 The relationship between λ and Higgs field

The generalized eigenvalue λ(w) is only proportional to the vacuum expectation value of Higgs,
not equal to it. Indeed, Higgs and gauge bosons as elementary particles correspond to wormhole
contacts carrying fermion and antifermion at the two wormhole throats and must be distinguished
from the space-time correlate of its vacuum expectation as something proportional to λ. In the
fermionic case the vacuum expectation value of Higgs does not seem to be even possible since
fermions do not correspond to wormhole contacts between two space-time sheets but possess only
single wormhole throat (p-adic mass calculations are consistent with this). Gauge bosons can have
Higgs expectation proportional to λ. The proportionality must be of form 〈H〉 ∝ λ/pn/2 if gauge
boson mass squared is of order 1/pn.
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4.4.10 Possible objections related to the interpretation of Dirac determinant

Suppose that that Dirac determinant is defined as a product of determinants associated with
various points zk of number theoretical braids and that these determinants are defined as products
of corresponding eigenvalues.

Since Dirac determinant is not real and is not invariant under isometries of CP2 and of δM4
±,

it cannot give only the exponent of Kähler function which is real and SU(3)× SO(3, 1) invariant.
The natural guess is that Dirac determinant gives also the Chern-Simons exponential and possible
phase factors depending on quantum numbers of parton.

1. The first manner to circumvent this objection is to restrict the consideration to maxima
of Kähler function which select preferred light-like 3-surfaces X3

l . The basic conjecture
forced by the number theoretic universality and allowed by TGD based view about coupling
constant evolution indeed is that perturbation theory at the level of configuration space can be
restricted to the maxima of Kähler function and even more: the radiative corrections given by
this perturbative series vanish being already coded by Kähler function having interpretation
as analog of effective action.

2. There is also an alternative way out of the difficulty: define the Dirac determinant and
zeta function using the minima of the modulus of the generalized Higgs as a function of
coordinates of X3

l so that continuous strands of braids are replaced by a discrete set of
points in the generic case.

The fact that general Poincare transformations fail to be symmetries of Dirac determinant is
not in conflict with Poincare invariance of Kähler action since preferred extremals of Kähler action
are in question and must contain the fixed partonic 2-surfaces at δM4

± so that these symmetries
are broken by boundary conditions which does not require that the variational principle selecting
the preferred extremals breaks these symmetries.

One can exclude the possibility that the exponent of the stringy action defined by the area of
X2 emerges also from the Dirac determinant. The point is that Dirac determinant is invariant
under the scalings of H metric whereas the area action is not.

The condition that the number of eigenvalues is finite is most naturally satisfied if generalized ζ
coding information about the properties of partonic 2-surface and expressible as a rational function
for which the inverse has a finite number of branches is in question.

4.4.11 How unique the construction of Higgs field is?

Is the construction of space-time correlate of Higgs as λ really unique? The replacement of H with
its power Hr, r > 0, leaves the minima of H invariant as points of X2 so that number theoretic
braid is not affected. As a matter fact, the group of monotonically increasing maps real-analytic
maps applied to H leaves number theoretic braids invariant.

The map H → Hr scales Kähler function to its r-multiple, which could be interpreted in terms
of 1/r- scaling of the Kähler coupling strength. Also super-canonical conformal weights identified
as zeros of ζ are scaled as h → h/r and Chern-Simons charge k is replaced with k/r so that at
least r = 1/n might be allowed.

One can therefore ask whether the powers of H could define a hierarchy of quantum phases
labelled by differen values of k and αK . The interpretation as separate phases would conform with
the idea that D in some sense has entire spectrum of generalized eigenvalues.

4.5 Quantization of the modified Dirac action

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
Stringy picture need not be correct with string being replaced number theoretic braids.
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1. The first question is how M4 and CP2 braids relate. Since one assumes that the data asso-
ciated with both braids are independent, it seems necessary to assume anti-commutativity
between all points of X2 belonging to some number theoretic braid.

2. There is no correlation between λ and eigenvalues associated with transverse degrees of
freedom as in the case of d’Alember operator. Therefore an infinite number of eigen-modes
of D for a given eigenvalue λ can be considered unless one poses some additional conditions.
This would mean that one could have anti-commutativity for different points of X2 and
anti-commutators of Ψ and conjugate at same point would be proportional to delta function.
This would not conform with the stringy picture.

3. How could one obtain stringy anticommutations? The assumption that modes are holomor-
phic or antiholomorphic would guarantee this since formally only single coordinate variable
would appear in Ψ. Anti-commutativity along string requires that in a given sector of con-
figuration space isometries commute with the selection of quantization axes for the isometry
algebra of the imbedding space. This might be justified by quantum classical correspon-
dence. The unitarity for Yang-Baxter matrices and unitarity of the inner product for the
radial modes r∆, ∆ = 1/2+ iy, is consistent with the stringy option where y would now label
those points of R+ which do not correspond to z = 0. String corresponds to the ζ-image of
the critical line containing non-trivial zeros of zeta at the geodesic sphere of S2

r .

4. One could ask whether number theoretic braids might have deeper meaning in terms of
anticommutativity. This would be the case if the modes in transversal degrees of freedom
reduce to a finite number and are actually labelled by λ. This could be achieved if there is
no other dependence on transverse degrees of freedom than that coming through λ(z). Anti-
commutativity would hold true only at finite number of points and that anti-commutators
would be finite in general. This outcome would be very nice.

5. An interesting question is whether the number theoretic braid could be also described by
introducing a non-commutativity of the complex coordinate of X2 provided by S2

r or S2
II .

This should replace anti-commutativity in X2 with anti-commutativity for different points of
the number theoretic braid. The nice outcome would be the finiteness of anti-commutators
at same point.

The following is an attempt to formulate this general vision in a more detail manner.

4.5.1 Fermionic anticommutation relations: non-stringy option

The fermionic anti-commutation relations must be consistent with the vacuum degeneracy and
with the anti-commutation relations of configuration space gamma matrices defining the matrix
elements of configuration space metric between complexified Hamiltonians.

1. The bosonic representation of configuration space Hamiltonians is naturally as Noether
charges associated with Chern-Simons action:

HA =
∫

d2xπ0
kjk

A ,

πα =
∂LC−S

∂αhk
. (42)

π0
k denotes bosonic canonical momentum density. Note that also fermionic dynamics allows

definition of Hamiltonians as fermionic charges) and this would give rise to fermionic represen-
tation of super-canonical algebra. Same applies to the super Kac-Moody algebra generators
which super Kac-Moody generators realized as X3-local isometries of the imbedding space.
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2. Super Hamiltonians identifiable as contractions of configuration space gamma matrices with
Killing vector fields of symplectic transformations in CH can be defined as matrix elements
of jk

AΓk between νR and Ψ:

JK
A ΓK ≡ ΓA = HS,A =

∫
d2xνRjk

AΓkΨ . (43)

H†
S,A is obtained by Hermitian conjugation.

3. The anti-commutation relations read as

{Ψ(x),ΓkΨ(y)} = π0
kJrsΣrsδ

2(x, y) . (44)

Here Jrs denotes the degenerate Kähler form of δM4
+ × CP2. What makes these anti-

commutation relations non-stringy is that anti-commutator is proportional to 2-D delta
function rather than 1-D delta function at 1-D sub-manifold of X2 as in the case of con-
formal field theories. Hence one would have 3-D quantum field theory with one light-like
direction.

4. The matrix elements of configuration space metric for the complexified Killing vector fields of
symplectic transformations give the elements of configuration space Kähler form and metric
as

{Γ†A, ΓB} = iGA,B = JA,B = {HA,HB} = H[A,B] . (45)

4.5.2 Fermionic anti-commutation relations: stringy option

As already noticed, 2-dimensional delta function in the anti-commutation relations implies that
spinor field is 2-D Euclidian free field rather than conformal field. The usual stringy picture would
require anti-commutativity only along circle and nonlocal commutators outside this circle.

Also the original argument based on the observation that the points of CP2 parameterize a large
class of solutions of Yang-Baxter equation suggests the stringy option. The subset of commuting
Yang-Baxter matrices corresponds to a geodesic sphere S2 of CP2 and the subset of unitary Yang-
Baxter matrices to a geodesic circle of S2 identifiable as real line plane compactified to S2. Physical
intuition strongly favors unitarity.

Stringy choice is consistent with the identification of the configuration space Hamiltonians as
bosonic Noether charges only if Noether charges correspond to closed but in general not exact
2-forms and thus reduce to integrals of a 1-form over 1-dimensional manifold representing the
discontinuity of the associated vector potential. That Noether charges would reduce to cohomology
would conform with almost TQFT property. This is indeed the case under conditions which will
be idenfied below.

1. The canonical momentum density associated with C-S action has the expression

πk = εαβ0(∂β [AαAk)− ∂α(AβAk] , (46)

and is thus a closed two-form. Note that the discontinuity of the monopole like vector
potential implies that the form in question is not exact.
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2. Also the Hamiltonian densities

HA = jk
Aπk = Jkl∂lHAεαβ0 [∂β(AαAk)− ∂α(AβAk] (47)

should define closed forms

HA = jk
Aπk = εαβ0

[
∂β(AαAkJkl∂lHA)− ∂α(AβAk∂lJ

klHA

]
. (48)

3. This is not the case in general since the derivatives coming from jk
A give the term

εαβ0AαAkJklDr(∂lHA)∂βhr −AβAkJklDr(∂lHA)∂αhr . (49)

which does not vanish unless the condition

AkJklDr(∂lHA) = ∂rΦ (50)

holds true.

The condition is equivalent with the vanishing of the Poisson bracket between Hamiltonian
and components of the Kähler potential:

∂kHAJkl∂lAr = 0 . (51)

This poses a restriction on the group of isometries of configuration space. The restriction
of Kähler potential to Ar is given by (Aθ, Aφ) = (0, cos(θ)) and Aφ generates rotations
in z-direction. Hence only the Hamiltonians commuting with Kähler gauge potential of
δM4

± × CP2 at X2 would have vanishing color isospin and presumably also vanishing color
hyper charge in the case of CP2 and vanishing net spin in case of δM4

+.

4. The discontinuity of Φ would result from the topological magnetic monopole character of the
Kähler potential Ak in δM4

± × CP2.

5. Quantum classical correspondence suggests that quantum measurement theory is realized at
the level of the configuration space and induces a decomposition of the configuration space to
a union of sub-configuration spaces corresponding to different choices of quantization axes of
angular momentum and color quantum numbers. Hence the interpretation of configuration
space isometries in terms of a maximal set of commuting observables would make sense.
Of course, also the canonical transformations for which Hamiltonians do not reduce to 1-D
integrals act as symmetries although they do not possess super counterparts. They play same
role as Lorentz boosts whereas the super-symmetrizable part of the algebra is analogous to
the little group of Lorentz group leaving momentum invariant. This means that complete
reduction to string model type theory does not occur even at the level of quantum states.

Consider now the basic formulas for the stringy option.
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1. Hamiltonians can be expressed as

HA =
∫

dxAAkJkl∂lHA . (52)

where A denotes the projection of Kähler gauge potential to the 1-dimensional manifold in
question.

2. The fermionic super-currents defining super-Hamiltonians and configuration space gamma
matrices would be given by

JK
A ΓK ≡ ΓA = HS,A =

∫
dxνRjk

AΓkΨ . (53)

H†
S,A is obtained by Hermitian conjugation.

3. The anti-commutation relations would read as

{Ψ(x), ΓkΨ(y)} = AAkJkl∂lHAJrsΣrsδ(x, y) . (54)

The general formulas for the matrix elements of the configuration space metric and Kähler
form are as for the non-stringy option.

4.5.3 String as the inverse image for image of critical line for zeros of zeta

Number theoretical argument suggests that 1-D dimensional delta function corresponds to the point
set for which δM4

+ projection corresponds to the line of non-trivial zeros for ζ: z = ζ(1/2 + iy)
that is intersection of X2 with R+. Thus stringy anti-commutation would be along R+. In CP2

the discrete set of points along which anticommutations would be given would be subset in S2
II .

Anti-commutativity on quantum critical set which corresponds to vacuum extremals would be
indeed very natural.

In case of Riemann zeta one must consider also trivial zeros at x = −2n, n = 1, 2.... These would
correspond to the integer powers of rn for which the definition of inner product is problematic.
Note however that for negative powers −2n corresponding to zeros of ζ there are no problems if
there is cutoff r > r0.

The number theoretic counterpart of string would be most naturally a curve whose S2
r projection

belongs to the image of the critical line consisting of points ζ(1/2 + iy). This image consist of the
real axis of S2 interpreted as compactified plane since ζ is real at the critical line. Note that in
case of Riemann zeta also real axis is mapped to the real line so that it gives nothing new. Also
this has a number theoretical justification since the basis r1/2+iy, where r could correspond to the
light-like coordinate of both δM4

± and partonic 3-surface, forms an orthogonal basis with respect
to the inner product defined by the scaling invariant integration measure dx/x.

For number theoretical reasons which should be already clear, the values of y would be restricted
to y =

∑
k nkyk of imaginary parts of zeros of ζ. In the case of partonic 3-surface this would mean

that eigenvalues of the modified Dirac operator would be of form 1/2+ i
∑

k nkyk and the number
theoretical cutoff regularizing the Dirac determinant would emerge naturally. The important
implication would be that not only qiyk but also yk must be algebraic numbers. Note that the zeros
of Riemann zeta at this line correspond to quantum criticality against phase transitions changing
Planck constant meaning geometrically a leakage between different sectors of the imbedding space.
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4.6 Number theoretic braids and global view about anti-commutations
of induced spinor fields

The anti-commutations of induced spinor fields are reasonably well understood locally. The basic
objects are 3-dimensional light-like 3-surfaces. These surfaces can be however seen as random light-
like orbits of partonic 2-surfaces taking which would thus seem to take the role of fundamental
dynamical objects. Conformal invariance in turn seems to make the 2-D partons 1-D objects and
number theoretical braids in turn discretizes strings. And it also seems that the strands of number
theoretic braid can in turn be discretized by considering the minima of Higgs potential in 3-D
sense.

Somehow these apparently contradictory views should be unifiable in a more global view about
the situation allowing to understand the reduction of effective dimension of the system as one goes
to short scales. The notions of measurement resolution and number theoretic braid indeed provide
the needed insights in this respect.

4.6.1 Anti-commutations of the induced spinor fields and number theoretical braids

The understanding of the number theoretic braids in terms of Higgs minima and maxima allows to
gain a global view about anti-commutations. The coordinate patches inside which Higgs modulus is
monotonically increasing function define a division of partonic 2-surfaces X2

t = X3
l ∩ δM4

±,t to 2-D
patches as a function of time coordinate of X3

l as light-cone boundary is shifted in preferred time
direction defined by the quantum critical sub-manifold M2 × CP2. This induces similar division
of the light-like 3-surfaces X3

l to 3-D patches and there is a close analogy with the dynamics of
ordinary 2-D landscape.

In both 2-D and 3-D case one can ask what happens at the common boundaries of the patches.
Do the induced spinor fields associated with different patches anti-commute so that they would
represent independent dynamical degrees of freedom? This seems to be a natural assumption both
in 2-D and 3-D case and correspond to the idea that the basic objects are 2- resp. 3-dimensional
in the resolution considered but this in a discretized sense due to finite measurement resolution,
which is coded by the patch structure of X3

l . A dimensional hierarchy results with the effective
dimension of the basic objects increasing as the resolution scale increases when one proceeds from
braids to the level of X3

l .
If the induced spinor fields associated with different patches anti-commute, patches indeed de-

fine independent fermionic degrees of freedom at braid points and one has effective 2-dimensionality
in discrete sense. In this picture the fundamental stringy curves for X2

t correspond to the bound-
aries of 2-D patches and anti-commutation relations for the induced spinor fields can be formu-
lated at these curves. Formally the conformal time evolution scaled down the boundaries of these
patches. If anti-commutativity holds true at the boundaries of patches for spinor fields of neigh-
boring patches, the patches would indeed represent independent degrees of freedom at stringy
level.

The cutoff in transversal degrees of freedom for the induced spinor fields means cutoff n ≤ nmax

for the conformal weight assignable to the holomorphic dependence of the induced spinor field on
the complex coordinate. The dropping of higher conformal weights should imply the loss of the
anti-commutativity of the induced spinor fields and its conjugate except at the points of the number
theoretical braid. Thus the number theoretic braid should code for the value of nmax: the naive
expectation is that for a given stringy curve the number of braid points equals to nmax.
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4.6.2 The decomposition into 3-D patches and QFT description of particle reactions
at the level of number theoretic braids

What is the physical meaning of the decomposition of 3-D light-like surface to patches? It would
be very desirable to keep the picture in which number theoretic braid connects the incoming posi-
tive/negative energy state to the partonic 2-surfaces defining reaction vertices. This is not obvious
if X3

l decomposes into causally independent patches. One can however argue that although each
patch can define its own fermion state it has a vanishing net quantum numbers in zero energy ontol-
ogy, and can be interpreted as an intermediate virtual state for the evolution of incoming/outgoing
partonic state.

Another problem - actually only apparent problem - has been whether it is possible to have
a generalization of the braid dynamics able to describe particle reactions in terms of the fusion
and decay of braid strands. For some strange reason I had not realized that number theoretic
braids naturally allow fusion and decay. Indeed, cusp catastrophe is a canonical representation
for the fusion process: cusp region contains two minima (plus maximum between them) and the
complement of cusp region single minimum. The crucial control parameter of cusp catastrophe
corresponds to the time parameter of X3

l . More concretely, two valleys with a mountain between
them fuse to form a single valley as the two real roots of a polynomial become complex conjugate
roots. The continuation of light-like surface to slicing of X4 to light-like 3-surfaces would give the
full cusp catastrophe.

In the catastrophe theoretic setting the time parameter of X3
l appears as a control variable on

which the roots of the polynomial equation defining minimum of Higgs depend: the dependence
would be given by a rational function with rational coefficients.

This picture means that particle reactions occur at several levels which brings in mind a kind
of universal mimicry inspired by Universe as a Universal Computer hypothesis. Particle reactions
in QFT sense correspond to the reactions for the number theoretic braids inside partons. This
level seems to be the simplest one to describe mathematically. At parton level particle reactions
correspond to generalized Feynman diagrams obtained by gluing partonic 3-surfaces along their
ends at vertices. Particle reactions are realized also at the level of 4-D space-time surfaces. One
might hope that this multiple realization could code the dynamics already at the simple level of
single partonic 3-surface.

4.6.3 About 3-D minima of Higgs potential

The dominating contribution to the modulus of the Higgs field comes from δM4
± distance to the axis

R+ defining quantization axis. Hence in scales much larger than CP2 size the geometric picture
is quite simple. The orbit for the 2-D minimum of Higgs corresponds to a particle moving in the
vicinity of R+ and minimal distances from R+ would certainly give a contribution to the Dirac
determinant. Of course also the motion in CP2 degrees of freedom can generate local minima and
if this motion is very complex, one expects large number of minima with almost same modulus of
eigenvalues coding a lot of information about X3

l .
It would seem that only the most essential information about surface is coded: the knowledge

of minima and maxima of height function indeed provides the most important general coordinate
invariant information about landscape. In the rational category where X3

l can be characterized by
a finite set of rational numbers, this might be enough to deduce the representation of the surface.

What if the situation is stationary in the sense that the minimum value of Higgs remains
constant for some time interval? Formally the Dirac determinant would become a continuous
product having an infinite value. This can be avoided by assuming that the contribution of a
continuous range with fixed value of Higgs minimum is given by the contribution of its initial
point: this is natural if one thinks the situation information theoretically. Physical intuition
suggests that the minima remain constant for the maxima of Kähler function so that the initial
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partonic 2-surface would determine the entire contribution to the Dirac determinant.

4.6.4 How generalized braid diagrams relate to the perturbation theory?

The association of generalized braid diagrams to incoming and outgoing partonic legs and possibly
also vertices of the generalized Feynman diagrams forces to ask whether the generalized braid
diagrams could give rise to a counterpart of perturbation theoretical formalism via the functional
integral over configuration space degrees of freedom.

The question is how the functional integral over configuration space degrees of freedom relates
to the generalized braid diagrams. The basic conjecture motivated also number theoretically is
that radiative corrections in this sense sum up to zero for critical values of Kähler coupling strength
and Kähler function codes radiative corrections to classical physics via the dependence of the scale
of M4 metric on Planck constant. Cancellation occurs only for critical values of Kähler coupling
strength αK : for general values of αK cancellation would require separate vanishing of each term
in the sum and does not occur.

This would mean following.

1. One would not have perturbation theory around a given maximum of Kähler function but
as a sum over increasingly complex maxima of Kähler function. Radiative corrections in
the sense of perturbative functional integral around a given maximum would vanish (so that
the expansion in terms of braid topologies would not make sense around single maximum).
Radiative corrections would not vanish in the sense of a sum over 3-topologies obtained by
adding radiative corrections as zero energy states in shorter time scale.

2. Connes tensor product with a given measurement resolution would correspond to a restriction
on the number of maxima of Kähler function labelled by the braid diagrams. For zero
energy states in a given time scale the maxima of Kähler function could be assigned to
braids of minimal complexity with braid vertices interpreted in terms of an addition of
radiative corrections. Hence a connection with QFT type Feyman diagram expansion would
be obtained and the Connes tensor product would have a practical computational realization.

3. The cutoff in the number of topologies (maxima of Kähler function contributing in a given
resolution defining Connes tensor product) would be always finite in accordance with the
algebraic universality.

4. The time scale resolution defined by the temporal distance between the tips of the causal
diamond defined by the future and past light-cones applies to the addition of zero energy
sub-states and one obtains a direct connection with p-adic length scale evolution of coupling
constants since the time scales in question naturally come as negative powers of two. More
precisely, p-adic primes near power of two are very natural since the coupling constant
evolution comes in powers of two of fundamental 2-adic length scale.

There are still some questions. Radiative corrections around given 3-topology vanish. Could
radiative corrections sum up to zero in an ideal measurement resolution also in 2-D sense so that
the initial and final partonic 2-surfaces associated with a partonic 3-surface of minimal complexity
would determine the outcome completely? Could the 3-surface of minimal complexity correspond
to a trivial diagram so that free theory would result in accordance with asymptotic freedom as
measurement resolution becomes ideal?

The answer to these questions seems to be ’No’. In the p-adic sense the ideal limit would
correspond to the limit p → 0 and since only p → 2 is possible in the discrete length scale
evolution defined by primes, the limit is not a free theory. This conforms with the view that CP2

length scale defines the ultimate UV cutoff.
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4.6.5 How p-adic coupling constant evolution and p-adic length scale hypothesis
emerge?

One can wonder how this picture relates to the earlier hypothesis that p-adic length coupling
constant evolution is coded to the hypothesized log(p) normalization of the eigenvalues of the
modified Dirac operator D. There are objections against this normalization. log(p) factors are
not number theoretically favored and one could consider also other dependencies on p. Since the
eigenvalue spectrum of D corresponds to the values of Higgs expectation at points of partonic
2-surface defining number theoretic braids, Higgs expectation would have log(p) multiplicative
dependence on p-adic length scale, which does not look attractive.

Is there really any need to assume this kind of normalization? Could the coupling constant
evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 induce p-adic coupling constant
evolution and explain why p-adic length scales correspond to Lp ∝ √

pR, p ' 2k, R CP2 length
scale? This looks attractive but there is a problem. p-Adic length scales come as powers of

√
2

rather than 2 and the strongly favored values of k are primes and thus odd so that n = k/2 would
be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0

(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√

pLp, which corresponds to secondary p-adic length scale. For instance,
in the case of electron with p = M127 one would have T127 = .1 second which defines a
fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep connection between
elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3.

4.6.6 How quantum classical correspondence is realized at parton level?

Quantum classical correspondence must assign to a given quantum state the most probable space-
time sheet depending on its quantum numbers. The space-time sheet X4(X3) defined by the
Kähler function depends however only on the partonic 3-surface X3, and one must be able to
assign to a given quantum state the most probable X3 - call it X3

max - depending on its quantum
numbers.

X4(X3
max) should carry the gauge fields created by classical gauge charges associated with

the Cartan algebra of the gauge group (color isospin and hypercharge and electromagnetic and
Z0 charge) as well as classical gravitational fields created by the partons. This picture is very
similar to that of quantum field theories relying on path integral except that the path integral is
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restricted to 3-surfaces X3 with exponent of Kähler function bringing in genuine convergence and
that 4-D dynamics is deterministic apart from the delicacies due to the 4-D spin glass type vacuum
degeneracy of Kähler action.

Stationary phase approximation selects X3
max if the quantum state contains a phase factor

depending not only on X3 but also on the quantum numbers of the state. A good guess is that the
needed phase factor corresponds to either Chern-Simons type action or a boundary term of YM
action associated with a particle carrying gauge charges of the quantum state. This action would
be defined for the induced gauge fields. YM action seems to be excluded since it is singular for
light-like 3-surfaces associated with the light-like wormhole throats (not only

√
det(g3) but also√

det(g4) vanishes).
The challenge is to show that this is enough to guarantee that X4(X3

max) carries correct gauge
charges. Kind of electric-magnetic duality should relate the normal components Fni of the gauge
fields in X4(X3

max) to the gauge fields Fij induced at X3. An alternative interpretation is in terms
of quantum gravitational holography. The difference between Chern-Simons action characterizing
quantum state and the fundamental Chern-Simons type factor associated with the Kähler form
would be that the latter emerges as the phase of the Dirac determinant.

One is forced to introduce gauge couplings and also electro-weak symmetry breaking via the
phase factor. This is in apparent conflict with the idea that all couplings are predictable. The
essential uniqueness of M-matrix in the case of HFFs of type II1 (at least) however means that
their values as a function of measurement resolution time scale are fixed by internal consistency.
Also quantum criticality leads to the same conclusion. Obviously a kind of bootstrap approach
suggests itself.

5 Super-symmetries at space-time and configuration space
level

The first difference between TGD and standard conformal field theories and string models is
that super-symmetry generators acting as configuration space gamma matrices acting as super
generators carry either lepton or quark number. Only the anti-commutators of quark like generators
expressible in terms of Hamiltonians HA of X3

l ×CP2 can contribute to the super-symmetrization
of the Poisson algebra and thus to CH metric via Poisson central extension, whereas leptonic
generators, which are proportional to jAkΓk can contribute to the super-symmetrization of the
function algebra of CH. Quarks correspond to N-S type representations and kappa symmetry of
string models whereas leptons correspond to Ramond type representations and ordinary super-
symmetry.

Also Super Kac-Moody invariance allows lepton-quark dichotomy. What forces to assign lep-
tons with Ramond representation is that covariantly constant neutrino must correspond to one
conformal mode (zn, n = 0). The p-adic mass calculations [6] carried for more than decade ago
led to the same assignment on physical grounds: p-adic mass calculations also forced to include
SO(3, 1) besides M4 a tensor factor to super-conformal representations, which in recent context
suggests that causal determinants X3

l ×CP2, X3
l ⊂ M4 an arbitrary light like 3-surface rather than

just a translate of δM4
+, must be allowed. Also now the lepton-quark, Ramond-NS and SUSY-

kappa dichotomies correspond to one and same dichotomy so that the general structure looks quite
satisfactory although it must be admitted that it is based on heuristic guess work.

Second deep difference is the appearance of the zeros of Riemann Zeta as conformal weights
of the generating elements of the super-canonical algebra and the expected action of conformal
algebra associated with 3-D CDS as a spectral flow in the space of super-canonical conformal
weights inducing a mere gauge transformation infinitesimally and a braiding action in topological
degrees of freedom.
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In this section the relationship of Super Kac-Moody invariance to ordinary super-conformal
symmetry and the interaction between Super-Kac Moody and super-canonical symmetries are dis-
cussed. For years the role of quaternions and octonions in TGD has been under an active specula-
tion. These aspects are considered in [E2], where the number theoretic equivalent of spontaneous
compactification is proposed. The conjecture states that space-time surfaces can be regarded either
as 4-surfaces in M4 × CP2 or as hyper-quaternionic 4-surfaces in the space HO = M8 possessing
hyper-octonionic structure (the attribute ’hyper’ means that imaginary units are multiplied by√−1 in order to achieve number theoretic norm with Minkowskian signature).

5.1 Super-canonical and Super Kac-Moody symmetries

The proper understanding of super symmetries has turned out to be crucial for the understanding
of quantum TGD and it seems that the mis-interpreted super-symmetries are one of the basic
reasons for the difficulties of super string models too. At this moment one can fairly say that
the construction of the configuration space spinor structure reduces to a purely group theoretical
problem of constructing representations for the super generators of the super-canonical algebra of
CP2 localized with respect to δM4

± in terms of second quantized induced spinor fields.

5.1.1 Super canonical symmetries

One can imagine two kinds of causal determinants besides δM4
+ × CP2. In principle all surfaces

X3
l ×CP2, where X3

l is a light like 3-surface of M4, could act as effective causal determinants: the
reason is that the creation of pairs of positive and negative energy space-time sheets is possible
at these surfaces. There are good hopes that the super-canonical and super-conformal symmetries
associated with δX3

l allow to generalize the construction of the configuration space geometry
performed at δM4

+ × CP2. If X3
l can be restricted to be unions of future and past light cone

boundaries, the generalization is more or less trivial: one just forms a union of configuration
spaces associated with unions of translates of δM4

+ and δM4
−.

As explained in the previous chapter, one can understand how the causal determinants X3
l ×CP2

emerge from the facts that space-time sheets with negative time orientation carry negative energy
and that the most elegant theory results when the net quantum numbers and conserved classical
quantities vanish for the entire Universe. Crossing symmetry allows consistency with elementary
particle physics and the identification of gravitational 4-momentum as difference of conserved
inertial (Poincare) 4-momenta for positive and negative energy matter provides consistency with
macroscopic physics.

The emergence of these additional causal determinants means that super-canonical symme-
tries become microscopic, rather than only cosmological, symmetries commuting with Poincare
transformations exactly for M4 × CP2 and apart from small quantum gravitational effects for
M4

+ × CP2. Super-canonical symmetry differs in many respects from Kac-Moody symmetries of
particle physics, which in fact correspond to the conformal invariance associated with the modified
Dirac action and correspond to the product of Poincare, electro-weak and color groups. It seems
that these symmetries are dually related.

5.1.2 Super Kac-Moody symmetries associated with the light like causal determi-
nants

Also the light like 3-surfaces X3
l of H defining elementary particle horizons at which Minkowskian

signature of the metric is changed to Euclidian and boundaries of space-time sheets can act as
causal determinants, and thus contribute to the configuration space metric. In this case the
symmetries correspond to the isometries of the imbedding space localized with respect to the
complex coordinate of the 2-surface X2 determining the light like 3-surface X3

l so that Kac-Moody
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type symmetry results. Also the condition
√

(g3) = 0 for the determinant of the induced metric
seems to define a conformal symmetry associated with the light like direction. This conforms
with duality since also the 7-D causal determinants X3

l × CP2 allow both radial and transversal
conformal symmetry.

Good candidate for the counterpart of this symmetry in the interior of space-time surface
is hyper-quaternion conformal invariance [E2]. All that is needed for these symmetries to be
equivalent that the spaces of super-gauge degrees of freedom defined by them are equivalent. Kac
Moody generators and their super counterparts can be associated with the 3-D light like CDs.

If is enough to localize only the H-isometries with respect to X3
l , the purely bosonic part of

the Kac-Moody algebra corresponds to the isometry group M4 × SO(3, 1)× SU(3). The physical
interpretation of these symmetries is not so obvious as one might think. The point is that one
can generalize the formulas characterizing the action of infinitesimal isometries on spinor fields
of finite-dimensional Kähler manifold to the level of the configuration space. This gives rise to
bosonic generators containing also a sigma-matrix term bilinear in fermionic oscillator operators.
This representation is not equivalent with the purely fermionic representations provided by induced
Dirac action. Thus one has two groups of local color charges and the challenge is to find a physical
interpretation for them. The following arguments fix the identification.

1. The hint comes from the fact that U(2) in the decomposition CP2 = SU(3)/U(2) corresponds
in a well-defined sense electro-weak algebra identified as a holonomy algebra of the spinor
connection. Hence one could argue that the U(2) generators of either SU(3) algebra might
be identifiable as generators of local U(2)ew gauge transformations whereas non-diagonal
generators would correspond to Higgs field. This interpretation would conform with the idea
that Higgs field is a genuine scalar field rather than a composite of fermions.

2. Since X3
l -local SU(3) transformations represented by fermionic currents are characterized

by central extension they would naturally correspond to the electro-weak gauge algebra and
Higgs bosons. This is also consistent with the fact that both leptons and quarks define
fermionic Kac Moody currents.

3. The fact that only quarks appear in the gamma matrices of the configuration space supports
the view that action of the generators of X3

l -local color transformations on configuration
space spinor fields represents local color transformations. If the action of X3

l -local SU(3)
transformations on configuration space spinor fields has trivial central extension term the
identification as a representation of local color symmetries is possible.

The topological explanation of the family replication phenomenon is based on an assignment
of 2-dimensional boundary to a 3-surface characterizing the elementary particle. The precise
identification of this surface has remained open and one possibility is that the 2-surface X2 defining
the light light-like surface associated with an elementary particle horizon is in question. This
assumption would conform with the notion of elementary particle vacuum functionals defined in
the zero modes characterizing different conformal equivalences classes for X2.

5.1.3 The relationship of the Super-Kac Moody symmetry to the standard super-
conformal invariance

Super-Kac Moody symmetry can be regarded as N = 4 complex super-symmetry with complex
H-spinor modes of H representing the 4 physical helicities of 8-component leptonic and quark
like spinors acting as generators of complex dynamical super-symmetries. The super-symmetries
generated by the covariantly constant right handed neutrino appear with both M4 helicities: it
however seems that covariantly constant neutrino does not generate any global super-symmetry in
the sense of particle-sparticle mass degeneracy. Only righthanded neutrino spinor modes (apart

57



from covariantly constant mode) appear in the expressions of configuration space gamma matrices
forming a subalgebra of the full super-algebra.

N = 2 real super-conformal algebra is generated by the energy momentum tensor T (z), U(1)
current J(z), and super generators G±(z) carrying U(1) charge. Now U(1) current would corre-
spond to right-handed neutrino number and super generators would involve contraction of covari-
antly constant neutrino spinor with second quantized induced spinor field. The further facts that
N = 2 algebra is associated naturally with Kähler geometry, that the partition functions associ-
ated with N = 2 super-conformal representations are modular invariant, and that N = 2 algebra
defines so called chiral ring defining a topological quantum field theory [25], lend a further support
for the belief that N = 2 super-conformal algebra acts in super-canonical degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (55)

qm is the fractional value of the U(1) charge, which would now correspond to a fractional fermion
number. For k = 1 one would have q = 0, 1/3,−1/3, which brings in mind anyons. ∆l=0,m=0 = 0
state would correspond to a massless state with a vanishing fermion number. Note that SU(2)k

Wess-Zumino model has the same value of c but different conformal weights. More information
about conformal algebras can be found from the appendix of [25].

For Ramond representation L0 − c/24 or equivalently G0 must annihilate the massless states.
This occurs for ∆ = c/24 giving the condition k = 2

[
l(l + 2)−m2

]
(note that k must be even and

that (k, l,m) = (4, 1, 1) is the simplest non-trivial solution to the condition). Note the appearance
of a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k +2). I have proposed that NS and
Ramond algebras could combine to a larger algebra containing also lepto-quark type generators
but this not necessary.

The conformal algebra defined as a direct sum of Ramond and NS N = 4 complex sub-algebras
associated with quarks and leptons might further extend to a larger algebra if lepto-quark gener-
ators acting effectively as half odd-integer Virasoro generators can be allowed. The algebra would
contain spin and electro-weak spin as fermionic indices. Poincare and color Kac-Moody generators
would act as symplectically extended isometry generators on configuration space Hamiltonians
expressible in terms of Hamiltonians of X3

l × CP2. Electro-weak and color Kac-Moody currents
have conformal weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 complex super-conformal invariance suggests that the extended
algebra requires the inclusion of also second quantized induced spinor fields with h = 1/2 and
their super-partners with h = 0 and realized as fermion-antifermion bilinears. Since G and Ψ
are labelled by 2 × 4 spinor indices, super-partners would correspond to 2 × (3 + 1) = 8 massless
electro-weak gauge boson states with polarization included. Their inclusion would make the theory
highly predictive since induced spinor and electro-weak fields are the fundamental fields in TGD.

5.1.4 How could conformal symmetries of light like 3-D CDs act on super-canonical
degrees of freedom?

An important challenge is to understand the action of super-conformal symmetries associated with
the light like 3-D CDs on super-canonical degrees of freedom. The breakthrough in this respect
via the algebraic formulation for the vision about vanishing loop corrections of ordinary Feynman
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diagrams in terms of equivalence of generalized Feynman diagrams with loops with tree diagrams
[C7]. The formulation involves Yang-Baxter equations, braid groups, Hopf algebras, and so called
ribbon categories and led to the following vision. The original formulation to be discussed in this
sub-subsection is very heuristic and a more quantitative formulation follows in the next subsection.

1. Quantum classical correspondence suggests that the complex conformal weights of super-
canonical algebra generators have space-time counterparts. The proposal is that the weights
are mapped to the points of the homologically non-trivial geodesic sphere S2 of CP2 corre-
sponds to the super-canonical conformal weights, and corresponds to a discrete set of points
at the space-time surface. These points would also label mutually commutating R-matrices.
The map is completely analogous to the map of momenta of quantum particles to the points
of celestial sphere. These points would belong to a ”time=constant” section of 2-dimensional
”space-time”, presumably circle, defining physical states of a two-dimensional conformal field
theory for which the scaling operator L0 takes the role of Hamiltonian.

2. One could thus regard super-generators as conformal fields in space-time or complex plane
having super-canonical conformal weights as punctures. The action of super-conformal alge-
bra and braid group on these points realizing monodromies of conformal field theories [25]
would induce by a pull-back a braid group action on the super-canonical conformal weights
of configuration space gamma matrices (super generators) and corresponding isometry gen-
erators.

At the first sight the explicit realization of super-canonical and Kac Moody generators seems
however to be in conflict with this vision. The interaction of the conformal algebra of X3

l on super-
canonical algebra is a pure gauge interaction since the definition of super canonical generators is
not changed by the action of conformal transformations of X3

l . This is however consistent with the
assumption that the action defined by the quantum-classical correspondence is also a pure gauge
interaction locally. The braiding action would be analogous to the holonomies encountered in the
case of non-Abelian gauge fields with a vanishing curvature in spaces possessing non-trivial first
homotopy group.

Quantum classical correspondence would allow to map abstract configuration space level to
space-time level.

1. The complex argument z of Kac Moody and Virasoro algebra generators T (z) =
∑

Tnzn

would be discretized so that it would have values on the set of supercanonical conformal
weights corresponding to the space t in the Cartan decomposition g = t + h of the tangent
space of the configuration space. These points could be interpreted as punctures of the
complex plane restricted to the lines Re(z) = ±1/2 and positive real axis if zeros of Riemann
zeta define the conformal weights.

2. The vacuum expectation values of the enveloping algebra of the super-canonical algebra would
reduce to n-point functions of a super-conformal quantum field theory in the complex plane
containing infinite number of punctures defined by the super-canonical conformal weights, for
which primary fields correspond to the representations of SO(3)×SU(3). These representa-
tions would combine to form infinite-dimensional representations of super-canonical algebra.
The presence of the gigantic super-canonical symmetries raises the hope that quantum TGD
could be solvable to a very high degree.

3. The Super Virasoro algebra and Super Kac Moody algebra associated with 3-D light like
CDs would act as symmetries of this theory and the S-matrix of TGD would involve the
n-point functions of this field theory. By 7–3 duality this indeed makes sense. The situation
would reduce to that encountered in WZW theory in the sense that one would have space-like
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3-surfaces X3 containing two-dimensional closed surfaces carrying representations of Super
Kac-Moody algebra.

This picture also justifies the earlier proposal that configuration space Clifford algebra defined
by the gamma matrices acting as super generators defines an infinite-dimensional von Neumann
algebra possessing hierarchies of type II1 factors [27] having a close connection with the non-trivial
representations of braid group and quantum groups. The sequence of non-trivial zeros of Riemann
Zeta along the line Re(s) = 1/2 in the plane of conformal weights could be regarded an an infinite
braid behind the von Neumann algebra [27]. Contrary to the expectations, also trivial zeros seem
to be important. The finite braids defined by subsets of zeros, and also superpositions of non-trivial
zeros of form 1/2+

∑
i yi, could be seen as a hierarchy of completely integrable 1-dimensional spin

chains leading to quantum groups and braid groups [24, 25] naturally.
It seems that not only Riemann’s zeta but also polyzetas [28, 29, 30, 32] could play a funda-

mental role in TGD Universe. The super-canonical conformal weights of interacting particles, in
particular of those forming bound states, are expected to have ”off mass shell” values. An attrac-
tive hypothesis is that they correspond to zeros of Riemann’s polyzetas. Interaction would allow
quite concretely the realization of braiding operations dynamically. The physical justification for
the hypothesis would be quantum criticality. Indeed, it has been found that the loop corrections
of quantum field theory are expressible in terms of polyzetas [31]. If the arguments of polyzetas
correspond to conformal weights of particles of many-particle bound state, loop corrections vanish
when the super-canonical conformal weights correspond to the zeros of polyzetas including zeta.

5.2 The relationship between super-canonical and Super Kac-Moody
algebras, Equivalence Principle, and justification of p-adic thermo-
dynamics

The relationship between super-canonical algebra (SC) acting at light-cone boundary and Super
Kac-Moody algebra (SKM) acting on light-like 3-surfaces has remained somewhat enigmatic due
to the lack of physical insights. This is not the only problem. The question to precisely what
extent Equivalence Principle (EP) remains true in TGD framework and what might be the precise
mathematical realization of EP is waiting for an answer. Also the justification of p-adic thermody-
namics for the scaling generator L0 of Virasoro algebra -in obvious conflict with the basic wisdom
that this generator should annihilate physical states- is lacking. It seems that these three problems
could have a common solution.

Before going to describe the proposed solution, some background is necessary. The latest
proposal for SC −SKM relationship relies on non-standard and therefore somewhat questionable
assumptions.

1. SKM Virasoro algebra (SKMV) and SC Virasoro algebra (SCV) (anti)commute for physical
states.

2. SC algebra generates states of negative conformal weight annihilated by SCV generators
Ln, n < 0, and serving as ground states from which SKM generators create states with
non-negative conformal weight.

This picture could make sense for elementary particles. On other hand, the recent model for
hadrons [F4] assumes that SC degrees of freedom contribute about 70 per cent to the mass of
hadron but at space-time sheet different from those assignable to quarks. The contribution of
SC degrees of freedom to the thermal average of the conformal weight would be positive. A
contradiction results unless one assumes that there exists also SCV ground states with positive
conformal weight annihilated by SCV elements Ln, n < 0, but also this seems implausible.
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5.2.1 New vision about the relationship between SCV and SKMV

Consider now the new vision about the relationship between SCV and SKMV .

1. The isometries of H assignable with SKM are also symplectic transformations [B3] (note
that I have used the term canonical instead of symplectic previously). Hence might con-
sider the possibility that SKM could be identified as a subalgebra of SC. If this makes
sense, a generalization of the coset construction obtained by replacing finite-dimensional Lie
group with infinite-dimensional symplectic group suggests itself. The differences of SCV and
SKMV elements would annihilate physical states and (anti)commute with SKMV . Also
the generators On, n > 0, for both algebras would annihilate the physical states so that the
differences of the elements would annihilate automatically physical states for n > 0.

2. The super-generator G0 contains the Dirac operator D of H. If the action of SCV and
SKMV Dirac operators on physical states are identical then cm of degrees of freedom disap-
pear from the differences G0(SCV )−G0(SKMV ) and L0(SCV )−L0(SKMV ). One could
interpret the identical action of the Dirac operators as the long sought-for precise realization
of Equivalence Principle (EP) in TGD framework. EP would state that the total inertial
four-momentum and color quantum numbers assignable to SC (imbedding space level) are
equal to the gravitational four-momentum and color quantum numbers assignable to SKM
(space-time level). Note that since super-canonical transformations correspond to the isome-
tries of the ”world of classical worlds” the assignment of the attribute ”inertial” to them is
natural.

3. The analog of coset construction applies also to SKM and SC algebras which means that
physical states can be thought of as being created by an operator of SKM carrying the
conformal weight and by a genuine SC operator with vanishing conformal weight. Therefore
the situation does not reduce to that encountered in super-string models.

4. The reader can recognize SC − SKM as a precise formulation for 7− 3 duality discussed in
the section About dualities and conformal symmetries in TGD framework stating that 3-D
light-like causal determinants and 7-D causal determinants δM4

± × CP2 are equivalent.

5.2.2 Consistency with p-adic thermodynamics

The consistency with p-adic thermodynamics provides a strong reality test and has been already
used as a constraint in attempts to understand the super-conformal symmetries in partonic level.

1. In physical states the p-adic thermal expectation value of the SKM and SC conformal
weights would be non-vanishing and identical and mass squared could be identified to the
expectation value of SKM scaling generator L0. There would be no need to give up Super
Virasoro conditions for SCV − SKMV .

2. There is consistency with p-adic mass calculations for hadrons [F4] since the non-perturbative
SC contributions and perturbative SKM contributions to the mass correspond to space-time
sheets labeled by different p-adic primes. The earlier statement that SC is responsible for
the dominating non-perturbative contributions to the hadron mass transforms to a statement
reflecting SC − SKM duality. The perturbative quark contributions to hadron masses can
be calculated most conveniently by using p-adic thermodynamics for SKM whereas non-
perturbative contributions to hadron masses can be calculated most conveniently by using
p-adic thermodynamics for SC. Also the proposal that the exotic analogs of baryons resulting
when baryon looses its valence quarks [F5] remains intact in this framework.
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3. The results of p-adic mass calculations depend crucially on the number N of tensor factors
contributing to the Super-Virasoro algebra. The required number is N = 5 and during years
I have proposed several explanations for this number. It seems that holonomic contributions
that is electro-weak and spin contributions must be regarded as contributions separate from
those coming from isometries. SKM algebras in electro-weak degrees and spin degrees of
of freedom, would give 2+1=3 tensor factors corresponding to U(2)ew × SU(2). SU(3) and
SO(3) (or SO(2) ⊂ SO(3) leaving the intersection of light-like ray with S2 invariant) would
give 2 additional tensor factors. Altogether one would indeed have 5 tensor factors.

There are some further questions which pop up in mind immediately.

1. Why mass squared corresponds to the thermal expectation value of the net conformal weight?
This option is forced among other things by Lorentz invariance but it is not possible to
provide a really satisfactory answer to this question yet. In the coset construction there is
no reason to require that the mass squared equals to the integer value conformal weight for
SKM algebra. This allows the possibility that mass squared has same value for states with
different values of SKM conformal weights appearing in the thermal state and equals to the
average of the conformal weight.
The coefficient of proportionality can be however deduced from the observation that the mass
squared values for CP2 Dirac operator correspond to definite values of conformal weight in
p-adic mass calculations. It is indeed possible to assign to partonic 2-surface X2 CP2 partial
waves correlating strongly with the net electro-weak quantum numbers of the parton so that
the assignment of ground state conformal weight to CP2 partial waves makes sense. In the
case of M4 degrees of freedom it is not possible to talk about momentum eigen states since
translations take parton out of δH+ so that momentum must be assigned with the tip of the
light-cone containing the particle.

2. The additivity of conformal weight means additivity of mass squared at parton level and this
has been indeed used in p-adic mass calculations. This implies the conditions

(
∑

i

pi)2 =
∑

i

m2
i (56)

The assumption p2
i = m2

i makes sense only for massless partons moving collinearly. In the
QCD based model of hadrons only longitudinal momenta and transverse momentum squared
are used as labels of parton states, which together with the presence of preferred plane M2

would suggest that one has

p2
i,|| = m2

i ,

−
∑

i

p2
i,⊥ + 2

∑

i,j

pi · pj = 0 . (57)

The masses would be reduced in bound states: m2
i → m2

i − (p2
T )i. This could explain why

massive quarks can behave as nearly massless quarks inside hadrons.

3. Single particle super-canonical conformal weights can have also imaginary part, call it y. The
question is what complex mass squared means physically. Complex conformal weights have
been assigned with an inherent time orientation distinguishing positive energy particle from
negative energy antiparticle (in particular, phase conjugate photons from ordinary photons).
This suggests an interpretation of y in terms of a decay width. p-Adic thermodynamics
suggest that y vanishes for states with vanishing conformal weight (mass square
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4. and that the measured value of y is a p-adic thermal average with non-vanishing contributions
from states with mass of order CP2 mass. This makes sense if yk are algebraic or perhaps
even rational numbers.

For instance, if a massless state characterized by p-adic prime p has p-adic thermal average
y = psyk, where s is the denominator of rational valued yk = r/s, the lowest order contribu-
tion to the decay width is proportional to 1/p by the basic rules of p-adic mass calculations
and the decay rate is of same order of magnitude as mass. If the p-adic thermal average of
y is of form pnyk for massless state then a decay width of order Γ ∼ p−(n−1)/2m results. For
electron n should be rather large. This argument generalizes trivially to the case in which
massless state has vanishing value of y.

5.2.3 Can SKM be lifted to a sub-algebra of SC?

A picture introducing only a generalization of coset construction as a new element, realizing math-
ematically Equivalence Principle, and justifying p-adic thermodynamics is highly attractive but
there is a problem. SKM is defined at light-like 3-surfaces X3 whereas SC acts at light-cone
boundary δH± = δM4

± × CP2. One should be able to lift SKM to imbedding space level some-
how. Also SC should be lifted to entire H. This problem was the reason why I gave up the idea
about coset construction and SC − SKM duality as it appeared for the first time.

A possible solution of the lifting problem comes from the observation making possible a more
rigorous formulation of HO −H duality stating that one can regard space-time surfaces either as
surfaces in hyper-octonionic space HO = M8 or in H = M4 × CP2 [C1, E2]. Consider first the
formulation of HO −H duality.

1. Associativity also in the number theoretical sense becomes the fundamental dynamical prin-
ciple if HO − H duality holds true [E2]. For a space-time surface X4 ⊂ HO = M8 as-
sociativity is satisfied at space-time level if the tangent space at each point of X4 is some
hyper-quaternionic sub-space HQ = M4 ⊂ M8. Also partonic 2-surfaces at the bound-
aries of causal diamonds formed by pairs of future and past directed light-cones defining the
basic imbedding space correlate of zero energy state in zero energy ontology and light-like
3-surfaces are assumed to belong to HQ = M4 ⊂ HO.

2. HO −H duality requires something more. If the tangent spaces contain the same preferred
commutative and thus hyper-complex plane HC = M2, the tangent spaces of X4 are pa-
rameterized by the points s of CP2 and X4 ⊂ HO can be mapped to X4 ⊂ M4 × CP2 by
assigning to a point of X4 regarded as point (m, e) of M4

0 ×E4 = M8 the point (m, s). Note
that one must also fix a preferred global hyper-quaternionic subspace M4

0 ⊂ M8 containing
M2 to be not confused with the local tangent planes M4.

3. The preferred plane M2 can be interpreted as the plane of non-physical polarizations so that
the interpretation as a number theoretic analog of gauge conditions posed in both quantum
field theories and string models is possible.

4. An open question is whether the resulting surface in H is a preferred extremal of Kähler
action. This is possible since the tangent spaces at light-like partonic 3-surfaces are fixed to
contain M2 so that the boundary values of the normal derivatives of H coordinates are fixed
and field equations fix in the ideal case X4 uniquely and one obtains space-time surface as
the analog of Bohr orbit.

5. The light-like ”Higgs term” proportional to O = γktk appearing in the generalized eigenvalue
equation for the modified Dirac operator is an essential element of TGD based description
of Higgs mechanism. This term can cause complications unless t is a covariantly constant
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light-like vector. Covariant constancy is achieved if t is constant light-like vector in M2.
The interpretation as a space-time correlate for the light-like 4-momentum assignable to the
parton might be considered.

6. Associativity requires that the hyper-octonionic arguments of N -point functions in HO de-
scription are restricted to a hyperquaternionic plane HQ = M4 ⊂ HO required also by the
HO−H correspondence. The intersection M4∩ int(X4) consists of a discrete set of points in
the generic case. Partonic 3-surfaces are assumed to be associative and belong to M4. The
set of commutative points at the partonic 2-surface X2 is discrete in the generic case whereas
the intersection X3∩M2 consists of 1-D curves so that the notion of number theoretical braid
crucial for the p-adicization of the theory as almost topological QFT is uniquely defined.

7. The preferred plane M2 ⊂ M4 ⊂ HO can be assigned also to the definition of N -point
functions in HO picture. It is not clear whether it must be same as the preferred planes
assigned to the partonic 2-surfaces. If not, the interpretation would be that it corresponds
to a plane containing the over all cm four-momentum whereas partonic planes M2

i would
contain the partonic four-momenta. M2 is expected to change at wormhole contacts having
Euclidian signature of the induced metric representing horizons and connecting space-time
sheets with Minkowskian signature of the induced metric.

The presence of globally defined plane M2 and the flexibility provided by the hyper-complex
conformal invariance raise the hopes of achieving the lifting of SC and SKM to H. At the light-
cone boundary the light-like radial coordinate can be lifted to a hyper-complex coordinate defining
coordinate for M2. At X3 one can fix the light-like coordinate varying along the braid strands
can be lifted to some hyper-complex coordinate of M2 defined in the interior of X4. The total
four-momenta and color quantum numbers assignable to the SC and SKM degrees of freedom
are naturally identical since they can be identified as the four-momentum of the partonic 2-surface
X2 ⊂ X3 ∩ δM4

± × CP2. Equivalence Principle would emerge as an identity.

5.2.4 Questions about conformal weights

One can pose several non-trivial questions about conformal weights.

1. The negative SKM conformal weights of ground states for elementary particles [F3] remain
to be understood in this framework. In the case of light-cone boundary the natural value for
ground state conformal weight of a scalar field is −1/2 since this implies a complete analogy
with a plane wave with respect to the radial light-like coordinate rM with inner product
defined by a scale invariant integration measure drM/rM . If the coset construction works
same should hold true for SKM degrees of freedom for a proper choice of the light-like radial
coordinate. There are thus good hopes that negative ground state conformal weights could
be understood.

2. Further questions relate to the imaginary parts of ground state conformal weights, which can
be vanishing in principle. Do the ground state conformal weights correspond to the zeros of
some zeta function- most naturally the zeta function defined by generalized eigenvalues of the
modified Dirac operator and satisfying Riemann hypothesis so that ground state conformal
weight would have real part -1/2? Do SC and SKM have same spectrum of complex conformal
weights as the coset construction suggests? Does the imaginary part of the conformal weight
bring in a new degree of freedom having interpretation in terms of space-time correlate for the
arrow of time with the generalization of the phase conjugation of laser physics representing
the reversal of the arrow of geometric time?
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3. The opposite light-cone boundaries of the causal diamond bring in mind the hemispheres
of S2 in ordinary conformal theory. In ordinary conformal theory positive/negative powers
of z correspond to these hemispheres. Could it be that the radial conformal weights are
of opposite sign and of same magnitude for the positive and negative energy parts of zero
energy state?

5.2.5 Further questions

There are still several open questions.

1. Is it possible to define hyper-quaternionic variants of the superconformal algebras in both H
and HO or perhaps only in HO. A positive answer to this question would conform with the
conjecture that the geometry of ”world of classical worlds” allows Hyper-Kähler property in
either or both pictures [B3].

2. How this picture relates to what is known about the extremals of field equations [D1] charac-
terized by generalized Hamilton-Jacobi structure bringing in mind the selection of preferred
M2?

3. Is this picture consistent with the views about Equivalence Principle and its possible breaking
based on the identification of gravitational four-momentum in terms of Einstein tensor is
interesting [D3]?

5.3 Brief summary of super-conformal symmetries in partonic picture

The notion of conformal super-symmetry is very rich and involves several non-trivial aspects,
and as the following discussions shows, one could assign the attribute super-conformal to several
symmetries. In the following I try to sum up what I see as important. What is new is that it is
now possible to tie everything to the fundamental description in terms of the parton level action
principle and provide a rigorous justification and precise realization for the claimed super-conformal
symmetries.

5.3.1 Super-canonical symmetries

Super-canonical symmetries correspond to the isometries of the configuration space CH (the world
of classical worlds) and are induced from the corresponding symmetries of δH± ≡ δM4

± × CP2.
The explicit representations have been constructed for both 2-D and stringy options. The most
stringent option having strong support from various considerations is that single particle conformal
weights are of form 1/2+i

∑
k nkyk, where sk = 1/2+iyk is zero of Riemann zeta. The construction

of many particle conformally bound states for poly-zetas leads to the same spectrum for bound
states and predicts that only 2- and 3-parton bound states are irreducible. On the other hand,
conformal weights are additive for the (anti)commutators of (super)Hamiltonians and gives thus
all weights of form s = n + i

∑
k nkyk.

The interpretation of this picture is not obvious.

1. The first interpretation would be that also other conformal weights are possible but that the
commutator and anti-commutator algebras of super-canonical algebra containing conformal
weights Re(s) = k/2, k > 1, represent gauge degrees of freedom. The sub-Virasoro algebra
generated by Ln, n > 0, would generate these conformal weights which would suggest that
Ln, n > 0, but not L0, must annihilate the physical states. The problem is that this makes
p-adic thermodynamics impossible.
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2. p-Adic mass calculations would suggest that Super Kac-Moody Virasoro (SKMV) generators
Ln, n > 0, do not correspond to pure gauge degrees of freedom, and a more general interpre-
tation would be that all these conformal weights are possible and represent genuine physical
degrees of freedom. The extension of the algebra using the standard assumption L−n = L†n
would bring in also the conformal weights Re(s) = −k/2, k ≥ 1. p-adic mass calculations
would encourage to think that it is super-canonical (SC) generators L−n, n > 0, which anni-
hilate tachyonic ground states and stabilize them against tachyonic p-adic thermodynamics.
The physical ground state with a vanishing conformal weight would be constructed from this
tachyonic ground state and p-adic thermodynamics for SKMV generators Ln, n > 0, would
apply to it.

3. In the discrete variant of theory required by number theoretic universality all stringy sub-
manifolds of X2 corresponding to the inverse images of z = ζ(n/2 + i

∑
k nkyk) ∈ S2 ⊂ CP2

would be realized so that one would have probability amplitude in the discrete set of these
number theoretic strings. SKMV generators Ln and Gr would excite n > 0 ”shells” in this
structure whereas SC generators would generate n < 0 shells.

4. Also the trivial zeros sn = −2n, n > 0, of Riemann Zeta could correspond to physically
interesting conformal weights for the super-canonical algebra (at least). In the region r ≥ r0

the function r−2n approaches zero and these powers are square integrable in this region.
The orthogonality with other states could be achieved by arranging things suitably in other
degrees of freedom [B2]. Since ζ is real also along real line, the set of even integers

∑
k nksk,

nk ∈ Z is mapped by ζ to the same real line of S2 ⊂ CP2 as non-trivial zeros of ζ. p-Adic
mass calculations would suggest that states with conformal weight smin = −2nmax (at least
these) could represent null states annihilated by L−n, n > 0.

5.3.2 Bosonic super Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√

g3 = 0
invariant. This gives the condition

δgαβCof(gαβ) = 0 , (58)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The con-
ditions can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms
xµ → xµ + ξµ of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξµ + gµβ∂αξµ + gαµ∂βξµ . (59)

1. Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space
generated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (60)

This gives

cA(x)
[
DkjA

l + Dlj
A
k

]
∂αhk∂βhl + 2∂αcAhklj

A,k∂βhl

= λ(x)gαβ + ∂µgαβξµ + gµβ∂αξµ + gαµ∂βξµ . (61)
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If an X3-local variant of a conformal transformation of the imbedding space is in question, the
first term is proportional to the metric since one has

DkjA
l + Dlj

A
k = 2hkl . (62)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βhl = ξµ∂µgαβ + gµβ∂αξµ + gαµ∂βξµ . (63)

2. A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations.
In order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the
metric in this form is plausible since generic 3-manifold allows coordinates in which the metric is
diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (64)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results.
If cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (65)

so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart

for the condition that Kac-Moody algebra acts in the transversal degrees of freedom only.
The condition also states that the components gri is not changed in the infinitesimal trans-
formation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (66)

The equation states that gri are not affected by the symmetry. The radial dependence of
ξi is fixed by this differential equation. No condition on ξr results. These conditions imply
that the local gauge transformations are dynamical with the light-like radial coordinate r
playing the role of the time variable. One should be able to fix the transformation more or
less arbitrarily at the partonic 2-surface X2.
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3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (67)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with
r appearing as a parameter. Note however that the derivatives of ξr do not appear in
the equation. At least formally equations are not over-determined so that solutions should
exist for arbitrary choices of cA as functions of X3 coordinates satisfying the orthogonality
conditions. If this is the case, the Kac-Moody algebra can be regarded as a local algebra in
X3 subject to the orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA

except the one associated with time translation and fixed by the orthogonality condition
depends on the radial coordinate r only. The larger algebra decomposes into a direct sum of
representations of this algebra.

3. Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the
vector fields ξµ are functionals cA and of the induced metric and also cA depends on induced
metric via the orthogonality condition. What this means that jA,k in principle acts also to φB in
the commutator [cAJA, cBJB ].

[
cAJA, cBJB

]
= cAcBJ [A,B] + JA ◦ cBJB − JB ◦ cAJA , (68)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal
transformation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from
grr component of the metric is not affected. Also the conditions coming from gir = 0 remain
unchanged. Therefore the commutation relations of local algebra apart from constraint from
transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The
orthogonality to the light-like tangent vector creates here a problem since the commutator does
not obviously satisfy this condition automatically. The problem can be solved by following the
recipes of non-covariant quantization of string model.

1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0 ≡ Ψ(P 0) is solved from
the orthogonality condition. This assumption is analogous with the assumption that time
coordinate is non-dynamical in the quantization of strings. The natural basis for the algebra
is obtained by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the
JA 6= P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent
with commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz
vector property of P k it is clear that the commutators resulting in a repeated commutation
have well-defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting
with P 0. Also D could be allowed without losing well-defined radial conformal weights but
the argument below excludes it. This picture conforms with the earlier identification of the
Kac-Moody algebra.
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Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mu-
tually commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving
added generators are

[
D, Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(69)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rh

l

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators
of SO(3) (but not with D so that it is excluded!), one can define the commutator of two
generators as a commutator of the remaining part and identify Ψ(P 0) from the condition
above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but
the interpretation would be that the sub-algebra plays the same role as SO(3) in the case of
Lorentz group: that is gives rise to generalized spin degrees of freedom whereas the entire
algebra divided by this sub-algebra would define the coset space playing the role of orbital
degrees of freedom. In fact, also the Kac-Moody type symmetries for which cA depends
on the transversal coordinates of X3 would correspond to orbital degrees of freedom. The
presence of these orbital degrees of freedom arranging super Kac-Moody representations into
infinite multiplets labelled by function basis for X2 means that the number of degrees of
freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip
of δM4

±. Thus it would be natural to assume that the preferred M4 coordinate varies along
this light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal
weights would reduce to SO(2)× E2 as in string models. E2 would act in tangent plane of
S2
± along this ray defining also SO(2) rotation axis.

4. Hamiltonians

The action of these transformations on Chern-Simons action is well-defined and one can deduce
the conserved quantities having identification as configuration space Hamiltonians. Hamiltonians
also correspond to closed 2-forms. The condition that the Hamiltonian reduces to a dual of closed
2-form is satisfied because X2-local conformal transformations of M4

± ×CP2 are in question (X2-
locality does not imply any additional conditions).

5. Action on spinors

One can imagine two interpretations for the action of generalized Kac-Moody transformations
on spinors.
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1. Both SO(3) and SU(3) rotations have a standard action as spin rotation and electro-weak
rotation allowing to define the action of the Kac-Moody algebra JA on spinors. This action
is not consistent with the generalized eigenvalue equation unless one restricts it to X2 at
δH±.

2. Since Kac-Moody generator performs a local spinor rotation and increases the conformal
weight by n units, the simplest possibility is that the action of transformation adds to Ψλ

with λ = 1/2+ i
∑

k nkyk, a term with eigenvalue λ+n and having JAΨλ as initial values at
X2. This would make natural the interpretation as a gauge transformation apart from the
effects caused by the possible central extension term.

6. How central extension term could emerge?

The central extension term of Kac-Moody algebra could correspond to a symplectic extension
which can emerge from the freedom to add a constant term to Hamiltonians as in the case of super-
canonical algebra. The expression of the Hamiltonians as closed forms could allow to understand
how the central extension term emerges.

In principle one can construct a representation for the action of Kac-Moody algebra on fermions
a representations as a fermionic bilinear and the central extension of Kac-Moody algebra could
emerge in this construction just as it appears in Sugawara construction.

5.3.3 Fermionic Kac-Moody algebra in spin and electro-weak degrees of freedom

The action of spin rotations and electro-weak rotations can be identified in terms of the group
SU(2) × SU(2) × U(1) associated inherently with N = 4 super-conformal symmetry. The action
on zero modes and eigen modes Ψ is straightforward to write as multiplication on the initial values
at X2 and assuming that λ in the generalized eigenvalue equation is replaced by λ + n.

Fermionic super-generators correspond naturally to zero modes and eigen modes of the modified
Dirac operator labelled by the radial conformal weights λ = 1/2 + i

∑
k nkyk and by the quantum

numbers labelling the dependence on transversal degrees of freedom. The real part of the conformal
weight would corresponds for DΨ = 0 to ground state conformal weight h = 0( Ramond) and to
h = 1/2 for λ 6= 0 (N-S). That also bosonic super-canonical Hamiltonians can have half odd integer
conformal weight is however in conflict with the intuition that half-odd integer conformal weights
correspond to states with odd fermion number.

For Ramond representations the lines ζ(Re(s) = n) ⊂ S2, n ≥ 0, would represent the conformal
weights at space-time level and for N-S representations the lines would correspond to ζ(Re(s) =
n + 1/2) ⊂ S2. If also trivial zeros are possible they would correspond to the lines ζ(Re(s) =
n− 2k) ⊂ S2, k = 1, 2, ...

5.3.4 Radial Super Virasoro algebras

The radial Super Virasoro transformations act on both δH± and partonic 3-surface X3 and are
consistent with the freedom to choose the basis of H± Hamiltonians and the eigenmode basis of
the modified Dirac operator by a re-scaling the light-like vector (tk or more plausibly, its dual nk)
appearing in the definition of the generalized eigenvalue equation.

In the partonic sector a possible interpretation is as local diffeomorphisms of X3. These trans-
formations do not however leave X3 invariant as a whole, which brings in some delicacies. In the
case of δH± the tip of the future light-cone remains invariant only for n ≥ 0 and r = ∞ only
for n ≤ 0. These facts could explain why only the generators Ln, n < 0 (or n < 0 depending on
whether positive or negative energy component of zero energy state is in question) annihilate the
ground states.
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One can assign to the Virasoro algebra of H± Hamiltonians as Noether charges defined by
current Π0

kjAk which reduces to a dual of a closed 2-form in the case of H± because its symplectic
form annihilates jAk. The transformations associated with X3 correspond to a unique shift of X2

in the light-like direction by δhk = rn∂rh
k so that the Hamiltonian is well-defined and reduces to

a value of a closed 2-form so that the stringy picture emerges.
The corresponding fermionic super Hamiltonians Gr = νrnΓrΨ anti-commute to these as is

easy to see by noticing that the light-like radial gamma matrices Γr appear in the combination
Γrγ

0Γr = γ0 in the anti-commutator so that it does not vanish. One can consider also more
general fermionic generators obtained by replacing right-handed neutrino spinor with an arbitrary
solution of DΨ = 0 which is eigen spinor of JklΣkl appearing in the fermionic anti-commutation
relations. This would give rise to a full N = 4 super-conformal symmetry of Ramond type but
having infinite degeneracy due to the dependence on transversal coordinates of X3. If one allows
also the solutions of DΨ = λΨ one obtains counterparts of N-S type representations with a similar
degeneracy.

It must be emphasized that four-momentum does not appear neither in the representations
of Super Virasoro generators as it does in string models and this is consistent with the Lorentz
invariant identification of mass squared as vacuum expectation value of the net conformal weight.
Also the problems with tachyons are avoided. Four-momentum could creep in if one had Sugawara
type representation of Super Virasoro generators in terms of Kac-Moody generators which indeed
contain also translation generators now. Note also that the stringy conformal weight would be
associated with partonic 2-surface, whereas radial conformal weight is associated with its light-like
orbit. Furthermore, the origin of the radial super-conformal symmetries is light-likeness rather
than stringy character. It is not clear whether it is useful to assign the usual conformal weights
with the conformal fields at X2 and whether the stringy anti-commutation relations for Ψ force
this kind of assignment.

5.3.5 Gauge super-symmetries associated with the generalized eigenvalue equation
for D

Zero modes which are annihilated by the operator T = tkγk or N = nkγk. tk (nk) is the light-like
appearing in the generalized eigenvalue equation for the modified Dirac operator. tk is parallel to
X3 and nk, which corresponds to the more plausible option, is obtained by changing the direction
of the spatial part of tk in the preferred M4 coordinate frame associated with the space-time
sheet (the rest system or number theoretically determined M4 time). nk defines inwards directed
tangent vector to the space-time sheet containing X3. The zero modes of the modified Dirac
operator annihilated by T (N) act as super gauge symmetries for the generalized eigen modes of
the generalized Dirac operator. They do not depend on r and thus have a vanishing conformal
weight.

The freedom to choose the scaling of tk (nk) rather freely gives rise to a further symmetry
which does not affect the eigenvalue spectrum but modifies the eigen modes. This symmetry is
definitely a pure gauge symmetry.

5.3.6 What about ordinary conformal symmetries?

Ordinary conformal symmetries acting on the complex coordinate of X2 have not yet been dis-
cussed. These symmetries involve the dependence on the induced metric through the moduli of
characterizing the conformal structure of X2. Stringy picture would suggest in the case of a spher-
ical topology that the zero modes and eigen modes of Ψ are proportional to zn at X2. Only n ≥ 0
mode would be non-singular at the northern hemisphere and n ≤ 0 at the southern hemisphere
and the eigen modes are non-normalizable.

71



One cannot glue these modes together at equator unless one assumes the behavior zn, n ≥ 0,
on the northern hemisphere and z−n, n ≥ 0, on the southern hemisphere. The identification
Ψ+(z) = Ψ†−(z) (z → z in Hermitian conjugation) at equator would state that ”positive energy”
particle at the northern hemisphere corresponds to a negative energy antiparticle at the southern
hemisphere. The assumption that energy momentum generators T+(z) and T−(z) are related in
the same manner at equator gives Ln = L†−n as required. Second candidate for the basis are
spherical harmonics which are eigenstates of L0−L0 defining angular momentum operator Lz but
they do not possess well defined conformal weights.

The radial time evolution for the Kac-Moody generators does not commute with L0 whereas
well-defined radial conformal weights are possible. This would support the view that the conformal
weight associated with X2 degrees of freedom does not contribute to the mass squared. If this
picture is correct, L0 would label different SKM representations and play a role similar to that in
conformal field theories for critical systems.

5.3.7 How to interpret the overall sign of conformal weight?

The overall sign of conformal weight can be changed by replacing r with 1/r and the region r > r0

with r < r0 of δH± or of partonic 3-surface. The earlier idea that the conformal weights associated
with the super-conformal algebras assignable to δH± and to light-like partonic 3-surfaces have
opposite signs would allow to construct representations of super-canonical algebra by constructing
a tachyonic ground state using super-canonical generators and its excitations using super Super-
Kac Moody generators as in super string models.

There is however an objection against this idea. The partons at δH± would have a finite distance
from the tip of the light cone at all points where they correspond to non-vacuum extremals, so
that the phase transitions changing the value of Planck constant should always occur via vacuum
extremals. This would not allow the leakage of Kähler magnetic flux between different sectors
of imbedding space. The cautious conclusion is that at least in the super-canonical sector both
r > r0 and r < r0 sectors related by the conformal transformation r → 1/r must be allowed and
correspond to positive and negative values for the radial super-conformal weights.

In zero energy ontology particle reactions correspond to zero energy states which at space-time
level carry positive energy particles at the end of world in geometric past and negative energy
particles at the end of world in the geometric future. Also conformal weights are of opposite sign
so that vanishing of the net conformal weights holds true only for zero energy states in accordance
with the spirit of p-adic mass calculations. If the states of geometric past correspond to positive
(negative) super Kac-Moody (super-canonical) conformal weights, the scattering could be regarded
as a process leading from the region r > r0 at δM4

+0 to the region r < r0 at δM4
−. At partonic

level the incoming partons would correspond to the region r < r0 and outgoing partons to the
region r > r0, which conforms with the idea that the final state can partons can be arbitrary far
in the geometric future.

In certain sense this picture would reproduce big ban-big crush picture at the level of super-
canonical algebra. r < r0 means that partons can be arbitrarily near to the tip of δM4

− representing
the final singularity whereas r > r0 for δM4

+ would be the counterpart for big bang.

5.3.8 Absolute extremum property for Kähler action implies dynamical Kac-Moody
and super conformal symmetries

The identification of the criterion selecting the preferred extremal of Kähler action defining space-
time surface as a counterpart of Bohr orbit has been a long standing challenge. The first guess was
that an absolute minimum is in question. The number theoretic theoretic picture, in particular
HO−H duality [E2] resolves the problem by assigning to each point of X4 a preferred plane M2,
which also fixes the boundary conditions for the field equations at light-like partonic 3-surfaces. The
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still open questions are whether the H images of hyper-quaternionic 4-surfaces of HO = M8 are
indeed extremals of Kähler action and whether these preferred extremals satisfy absolute extremum
property. Be as it may, the following argument suggests that absolute extremum property gives
rise to additional symmetries.

The extremal property for Kähler action with respect to variations of time derivatives of initial
values keeping hk fixed at X3 implies the existence of an infinite number of conserved charges
assignable to the small deformations of the extremum and to H isometries. Also infinite number
of local conserved super currents assignable to second variations and to covariantly constant right
handed neutrino are implied. The corresponding conserved charges vanish so that the interpreta-
tion as dynamical gauge symmetries is appropriate. This result provides strong support that the
local extremal property is indeed consistent with the almost-topological QFT property at parton
level.

The starting point are field equations for the second variations. If the action contain only
derivatives of field variables one obtains for the small deformations δhk of a given extremal

∂αJα
k = 0 ,

Jα
k =

∂2L

∂hk
α∂hl

β

δhl
β , (70)

where hk
α denotes the partial derivative ∂αhk. A simple example is the action for massless scalar

field in which case conservation law reduces to the conservation of the current defined by the
gradient of the scalar field. The addition of mass term spoils this conservation law.

If the action is general coordinate invariant, the field equations read as

DαJα,k = 0 (71)

where Dα is now covariant derivative and index raising is achieved using the metric of the imbedding
space.

The field equations for the second variation state the vanishing of a covariant divergence and
one obtains conserved currents by the contraction this equation with covariantly constant Killing
vector fields jk

A of M4 translations which means that second variations define the analog of a local
gauge algebra in M4 degrees of freedom.

∂αJA,α
n = 0 ,

JA,α
n = Jα,k

n jA
k . (72)

Conservation for Killing vector fields reduces to the contraction of a symmetric tensor with Dkjl

which vanishes. The reason is that action depends on induced metric and Kähler form only.
Also covariantly constant right handed neutrino spinors ΨR define a collection of conserved

super currents associated with small deformations at extremum

Jα
n = Jα,k

n γkΨR ,

. (73)

Second variation gives also a total divergence term which gives contributions at two 3-dimensional
ends of the space-time sheet as the difference
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Qn(X3
f )−Qn(X3) = 0 ,

Qn(Y 3) =
∫

Y 3
d3xJn , Jn = J tkhklδh

l
n . (74)

The contribution of the fixed end X3 vanishes. For the extremum with respect to the variations
of the time derivatives ∂th

k at X3 the total variation must vanish. This implies that the charges
Qn defined by second variations are identically vanishing

Qn(X3
f ) =

∫

X3
f

Jn = 0 . (75)

Since the second end can be chosen arbitrarily, one obtains an infinite number of conditions anal-
ogous to the Virasoro conditions. The analogs of unbroken loop group symmetry for H isometries
and unbroken local super symmetry generated by right handed neutrino result. Thus extremal
property is a necessary condition for the realization of the gauge symmetries present at partonic
level also at the level of the space-time surface. The breaking of super-symmetries could perhaps
be understood in terms of the breaking of these symmetries for light-like partonic 3-surfaces which
are not extremals of Chern-Simons action.

5.4 Large N = 4 SCA is the natural option

The arguments below support the view that ”large” N = 4 SCA is the natural algebra in TGD
framework.

5.4.1 How N = 4 super-conformal invariance emerges from the parton level formu-
lation of quantum TGD?

The discovery of the formulation of TGD as a N = 4 almost topological super-conformal QFT with
light-like partonic 3-surfaces identified as basic dynamical objects led to the final understanding
of super-conformal symmetries and their breaking. N = 4 super-conformal algebra corresponds
to the maximal algebra with SU(2)× U(2) Kac-Moody algebra as inherent fermionic Kac-Moody
algebra having interpretation in terms of rotations and electro-weak gauge group.

5.4.2 Large N = 4 SCA algebra

Large N = 4 super-conformal symmetry with SU(2)+ × SU(2)− × U(1) inherent Kac-Moody
symmetry seems to define the fundamental partonic super-conformal symmetry in TGD framework.
In the case of SKM algebra the groups would act on induced spinors with SU(2)+ representing
spin rotations and SU(2)− × U(1) = U(2)ew electro-weak rotations. In super-canonical sector the
action would be geometric: SU(2)+ would act as rotations on light-cone boundary and U(2) as
color rotations leaving invariant a preferred CP2 point.

A concise discussion of this symmetry with explicit expressions of commutation and anticom-
mutation relations can be found in [20]. The representations of SCA are characterized by three
central extension parameters for Kac-Moody algebras but only two of them are independent and
given by

k± ≡ k(SU(2)±) ,

k1 ≡ k(U(1)) = k+ + k− . (76)
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The central extension parameter c is given as

c =
6k+k−

k+ + k−
. (77)

and is rational valued as required.
A much studied N = 4 SCA corresponds to the special case

k− = 1 , k+ = k + 1 , k1 = k + 2 ,

c =
6(k + 1)
k + 2

. (78)

c = 0 would correspond to k+ = 0, k− = 1, k1 = 1. Central extension would be trivial in rotational
degrees of freedom but non-trivial in U(2)ew. For k+ > 0 one has k1 = k+ + k− 6= k+. A
possible interpretation is in terms of electro-weak symmetry breaking with k+ > 0 signalling for
the massivation of electro-weak gauge bosons.

An interpretation consistent with the general vision about the quantization of Planck constants
is that k+ and k− relate directly to the integers na and nb characterizing the values of M4

± and
CP2 Planck constants via the formulas na = k+ + 2 and nb = k− + 2. This would require k± ≥ 1
for Gi a finite subgroup of SU(2) (”anyonic” phases). In stringy phases with Gi = SU(2) for i = a
or i = b or for both, ki could also vanish so that also ni = 2 corresponding to A2 ADE diagram
and SU(2) Kac-Moody algebra becomes possible. In the super-canonical sector k+ = 0 would
mean massless gluons and k− = k1 that U(2) ⊂ SU(3) and possibly entire SU(3) represents an
unbroken symmetry.

5.4.3 About breaking of large N = 4 SCA

Partonic formulation predicts that large N = 4 SCA is a broken symmetry, and the first guess
is that breaking could be thought to occur via several steps. First a ”small” N = 4 SCA with
Kac-Moody group SU(2) × U(1) would result. The next step would lead to N = 2 SCA and the
final step to N = 0 SCA. Several symmetry breaking scenarios are possible.

1. SU(2)× U(1) could correspond to electro-weak gauge group such that rotational degrees of
freedom are frozen dynamically by the massivation of the corresponding excitations. This
interpretation could apply in stringy phase: for cosmic strings rotational excitations are
indeed hyper-massive.

2. The interpretation of SU(2) as spin rotation group and U(1) as electromagnetic gauge group
conforms with the general vision about electroweak symmetry breaking in non-stringy phase.
The interpretation certainly makes sense for covariantly constant right handed neutrinos for
which spin direction is free.

The next step in the symmetry breaking sequence would be N = 2 SCA with U(1) ⊂ SU(2)×
U(2) sub-algebra. The interpretation could be as electro-weak symmetry breaking in the stringy
sector (cosmic strings) so that U(1) would correspond to em charge or possibly weak isospin.

5.4.4 Relationship to super-strings and M-theory

The (4,4) signature characterizing N = 4 SCA topological field theory is not a problem since in
TGD framework the target space becomes a fictive concept defined by the Cartan algebra. Both
M4 × CP2 decomposition of the imbedding space and space-time dimension are crucial for the
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2 + 2 + 2 + 2 structure of the Cartan algebra, which together with the notions of the configuration
space and generalized coset representation formed from super Kac-Moody and super-canonical
algebras guarantees N = 4 super-conformal invariance.

Including the 2 gauge degrees of freedom associated with M2 factor of M4 = M2 × E2 the
critical dimension becomes D = 10 and and including the radial degree of light-cone boundary the
critical dimension becomes D = 11 of M-theory. Hence the fictive target space associated with
the vertex operator construction corresponds to a flat background of super-string theory and flat
background of M-theory with one light-like direction. From TGD point view the difficulties of
these approaches are due to the un-necessary assumption that the fictive target space defined by
the Cartan algebra corresponds to the physical imbedding space. The flatness of the fictive target
space forces to introduce the notion of spontaneous compactification and dynamical imbedding
space and this in turn leads to the notion of landscape.

5.4.5 Questions

A priori one can consider 3 different options concerning the identification of quarks and leptons.

1. Could also quarks define N = 4 superconformal symmetry?

One can ask, whether the construction could be extended by allowing H-spinors of opposite
chirality to have leptonic quantum numbers so that free quarks would have integer charge. The
construction does not work. The direct sum of N = 4 SCAs can be realized but N = 8 algebra
would require SO(7) rotations mixing states with different fermion numbers: for N = 4 SCA this
is not needed. Furthermore, only N < 4 super-conformal algebras allow an associative realization
and N = 8 non-associative realization discovered first by Englert exists only at the limit when
Kac-Moody central extension parameter k becomes infinite (this corresponds to a critical phase
formally and q = 1 Jones inclusion). This is not enough for the purposes of TGD and number
theoretic vision strongly supports ”small” N = 4 SCA.

2. Integer charged leptons and fractionally charged quarks?

Second option would be leptons and fractionally charged quarks with N = 4 SCA in leptonic
sector. It is indeed possible to realize both quark and lepton spinors as super generators of
super affinized quaternion algebras (a generalization of super-Kac Moody algebras) so that the
fundamental spectrum generating algebra is obtained. Quarks with their natural charges can
appear only in n = 3, k = 1 phase together with fractionally charged leptons. Leptons in this
phase would have strong interactions with quarks. The penetration of lepton into hadron would
give rise to this kind of situation. Leptons can indeed move in triality 1 states since 3-fold covering
of CP2 points by M4 points means that 3 full rotations for the phase angle of CP2 complex
coordinate corresponds to single 2π rotation for M4 point.

Hadron like states would correspond to the lowest possible Jones inclusion characterized by n=3
and the subgroup A2 (Z3) of SU(2). The work with quantization of Planck constant had already
earlier led to the realization that ADE Dynkin diagrams assignable to Jones inclusions indeed
correspond to gauge groups [A8]: in particular, A2 corresponds to color group SU(3). Infinite
hierarchy of hadron like states with n = 3, 4, 5... quarks or leptons is predicted corresponding to
the hierarchy of Jones inclusions, and I have already earlier proposed that this hierarchy should
be crucial for the understanding of living matter [M3]. For states containing quarks n would be
multiple of 3.

One can understand color confinement of quarks as absolute if one accepts the generalization
of the notion of imbedding space forced by the quantization of Planck constant. Ordinary gauge
bosons come in two varieties depending on whether their couplings are H-vectorial or H-axial.
Strong interactions inside hadrons could be also interpreted as H-axial electro-weak interactions
which have become strong (presumably because corresponding gauge bosons are massless) as is

76



clear from the fact that arbitrary high n-point functions are non-vanishing in the phases with
q 6= 1. Already earlier the so called HO-H duality inspired by the number theoretical vision [E2]
led to the same proposal but for ordinary electro-weak interactions which can be also imagined in
the scenario in which only leptons are fundamental fermions.

3. Quarks as fractionally charged leptons?

For the third option only leptons would appear as free fermions. The dramatic prediction would
be that quarks would be fractionally charged leptons. It is however not clear whether proton can
decay to positron plus something (recall the original erratic interpretation of positron as proton
by Dirac!): lepton number fractionization meaning that baryon consists of three positrons with
fermion number 1/3 might allow this. If not, then only the interactions mediated by the exchanges
of gauge bosons (vanishing lepton number is essential) between worlds corresponding to different
Jones inclusions are possible and proton would be stable.

There are however also objections. In particular, the resulting states are not identical with
color partial waves assignable to quarks and the nice predictions of p-adic mass calculations for
quark and hadron masses might be lost. Hence the cautious conclusion is that the original scenario
with integer charged quarks predicting confinement automatically is the correct one.

6 Color degrees of freedom

The ground states for the Super Virasoro representations correspond to spinor harmonics in M4×
CP2 characterized by momentum and color quantum numbers. The correlation between color and
electro-weak quantum numbers is wrong for the spinor harmonics and these states would be also
hyper-massive. The super-canonical generators allow to build color triplet states having negative
vacuum conformal weights, and their values are such that p-adic massivation is consistent with
the predictions of the earlier model differing from the recent one in the quark sector. In the
following the construction and the properties of the color partial waves for fermions and bosons
are considered. The discussion follows closely to the discussion of [18].

6.1 SKM algebra and counterpart of Super Virasoro conditions

The geometric part of SKM algebra is defined as an algebra respecting the light-likeness of the
partonic 3-surface. It consists of X3-local conformal transformations of M4

± and SU(3)-local SU(3)
rotations. The requirement that generators have well defined radial conformal weight with respect
to the lightlike coordinate r of X3 restricts M4 conformal transformations to the group SO(3)×E3.
This involves choice of preferred time coordinate. If the preferred M4 coordinate is chosen to
correspond to a preferred light-like direction in δM4

± characterizing the theory, a reduction to
SO(2)×E2 more familiar from string models occurs. The algebra decomposes into a direct sum of
sub-algebras mapped to themselves by the Kac-Moody algebra generated by functions depending
on r only. SKM algebra contains also U(2)ew Kac-Moody algebra acting as holonomies of CP2

and having no bosonic counterpart.
p-Adic mass calculations require N = 5 sectors of super-conformal algebra. These sectors

correspond to the 5 tensor factors for the SO(3)×E3×SU(3)×U(2)ew (or SO(2)×E2×SU(3)×
U(2)ew ) decomposition of the SKM algebra to gauge symmetries of gravitation, color and electro-
weak interactions. These symmetries act on the intersections X2 = X3

l ∩X7 of 3-D light like causal
determinants (CDs) X3

l and 7-D light like CDs X7 = δM4
+×CP2. This constraint leaves only the

2 transversal M4 degrees of freedom since the translations in light like directions associated with
X3

l and δM4
+ are eliminated.

The algebra differs from the standard one in that super generators G(z) carry lepton and quark
numbers are not Hermitian as in super-string models (Majorana conditions are not satisfied). The
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counterparts of Ramond representations correspond to zero modes of a second quantized spinor field
with vanishing radial conformal weight. Non-zero modes with generalized eigenvalues λ = 1/2+iy,
y =

∑
k nkyk, nk ≥ 0, of the modified Dirac operator with sk = 1/2 + iyk a zero or Rieman Zeta,

define ground states of N-S type super Virasoro representations.
What is new is the imaginary part of conformal weight which means that the arrow of geometric

time manifests itself via the sign of the imaginary part y already at elementary particle level. More
concretely, positive energy particle propagating to the geometric future is not equivalent with
negative energy particle propagating to the geometric past. The strange properties of the phase
conjugate provide concrete physical demonstration of this difference. p-Adic mass calculations
suggest the interpretation of y in terms of a decay width of the particle.

The Ramond or N-S type Virasoro conditions satisfied by the physical states in string model
approach are replaced by the formulas expressing mass squared as a conformal weight. The con-
dition is not equivalent with super Virasoro conditions since four-momentum does not appear in
super Virasoro generators. It seems possible to assume that the commutator algebra [SKM, SC]
and the commutator of [SKMV,SCV ] of corresponding Super Virasoro algebras annihilate phys-
ical states. This would give rise to the analog of Super Virasoro conditions which could be seen as
a Dirac equation in the world of classical worlds.

6.1.1 CP2 CM degrees of freedom

Important element in the discussion are center of mass degrees of freedom parameterized by imbed-
ding space coordinates. By the effective 2-dimensionality it is indeed possible to assign to partons
momenta and color partial waves and they behave effectively as free particles. In fact, the technical
problem of the earlier scenario was that it was not possible to assign symmetry transformations
acting only on on the boundary components of 3-surface.

One can assign to each eigen state of color quantum numbers a color partial wave in CP2

degrees of freedom. Thus color quantum numbers are not spin like quantum numbers in TGD
framework except effectively in the length scales much longer than CP2 length scale. The corre-
lation between color partial waves and electro-weak quantum numbers is not physical in general:
only the covariantly constant right handed neutrino has vanishing color.

6.1.2 Mass formula, and condition determining the effective string tension

Mass squared eigenvalues are given by

M2 = m2
CP2

+ kL0 . (79)

The contribution of CP2 spinor Laplacian to the mass squared operator is in general not integer
valued.

The requirement that mass squared spectrum is integer valued for color partial waves possibly
representing light states fixes the possible values of k determining the effective string tension
modulo integer. The value k = 1 is the only possible choice. The earlier choice kL = 1 and
kq = 2/3, kB = 1 gave integer conformal weights for the lowest possible color partial waves. The
assumption that the total vacuum weight hvac is conserved in particle vertices implied kB = 1.

6.2 General construction of solutions of Dirac operator of H

The construction of the solutions of massless spinor and other d’Alembertians in M4
+ × CP2 is

based on the following observations.
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1. d’Alembertian corresponds to a massless wave equation M4 × CP2 and thus Kaluza-Klein
picture applies, that is M4

+ mass is generated from the momentum in CP2 degrees of freedom.
This implies mass quantization:

M2 = M2
n ,

where M2
n are eigenvalues of CP2 Laplacian. Here of course, ordinary field theory is consid-

ered. In TGD the vacuum weight changes mass squared spectrum.

2. In order to get a respectable spinor structure in CP2 one must couple CP2 spinors to an odd
integer multiple of the Kähler potential. Leptons and quarks correspond to n = 3 and n = 1
couplings respectively. The spectrum of the electromagnetic charge comes out correctly for
leptons and quarks.

3. Right handed neutrino is covariantly constant solution of CP2 Laplacian for n = 3 coupling
to Kähler potential whereas right handed ’electron’ corresponds to the covariantly constant
solution for n = −3. From the covariant constancy it follows that all solutions of the spinor
Laplacian are obtained from these two basic solutions by multiplying with an appropriate
solution of the scalar Laplacian coupled to Kähler potential with such a coupling that a
correct total Kähler charge results. Left handed solutions of spinor Laplacian are obtained
simply by multiplying right handed solutions with CP2 Dirac operator: in this operation the
eigenvalues of the mass squared operator are obviously preserved.

4. The remaining task is to solve scalar Laplacian coupled to an arbitrary integer multiple of
Kähler potential. This can be achieved by noticing that the solutions of the massive CP2

Laplacian can be regarded as solutions of S5 scalar Laplacian. S5 can indeed be regarded as
a circle bundle over CP2 and massive solutions of CP2 Laplacian correspond to the solutions
of S5 Laplacian with exp(isτ) dependence on S1 coordinate such that s corresponds to the
coupling to the Kähler potential:

s = n/2 .

Thus one obtains

D2
5 = (Dµ − iAµ∂τ )(Dµ − iAµ∂τ ) + ∂2

τ (80)

so that the eigen values of CP2 scalar Laplacian are

m2(s) = m2
5 + s2 (81)

for the assumed dependence on τ .

5. What remains to do, is to find the spectrum of S5 Laplacian and this is an easy task.
All solutions of S5 Laplacian can be written as homogenous polynomial functions of C3

complex coordinates Zk and their complex conjugates and have a decomposition into the
representations of SU(3) acting in natural manner in C3.

6. The solutions of the scalar Laplacian belong to the representations (p, p+ s) for s ≥ 0 and to
the representations (p + |s|, p) of SU(3) for s ≤ 0. The eigenvalues m2(s) and degeneracies
d are
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m2(s) =
2Λ
3

[p2 + (|s|+ 2)p + |s|] , p > 0 ,

d =
1
2
(p + 1)(p + |s|+ 1)(2p + |s|+ 2) . (82)

Λ denotes the ’cosmological constant’ of CP2 (Rij = Λsij).

6.3 Solutions of the leptonic spinor Laplacian

Right handed solutions of the leptonic spinor Laplacian are obtained from the asatz of form

νR = Φs=0ν
0
R ,

where uR is covariantly constant right handed neutrino and Φ scalar with vanishing Kähler charge.
Right handed ’electron’ is obtained from the ansats

eR = Φs=3e
0
R ,

where e0
R is covariantly constant for n = −3 coupling to Kähler potential so that scalar function

must have Kähler coupling s = n/2 = 3 a in order to get a correct Kähler charge. The d’Alembert
equation reduces to

(DµDµ − (1− ε)Λ)Φ = −m2Φ ,

ε(ν) = 1 , ε(e) = −1 . (83)

The two additional terms correspond to the curvature scalar term and JklΣkl terms in spinor
Laplacian. The latter term is proportional to Kähler coupling and of different sign for ν and e,
which explains the presence of the sign factor ε in the formula.

Right handed neutrinos correspond to (p, p) states with p ≥ 0 with mass spectrum

m2(ν) =
m2

1

3
[
p2 + 2p

]
, p ≥ 0 ,

m2
1 ≡ 2Λ . (84)

Right handed ’electrons’ correspond to (p, p + 3) states with mass spectrum

m2(e) =
m2

1

3
[
p2 + 5p + 6

]
, p ≥ 0 . (85)

Left handed solutions are obtained by operating with CP2 Dirac operator on right handed solutions
and have the same mass spectrum and representational content as right handed leptons with one
exception: the action of the Dirac operator on the covariantly constant right handed neutrino
((p = 0, p = 0) state) annihilates it.

6.4 Quark spectrum

Quarks correspond to the second conserved H-chirality of H-spinors. The construction of the
color partial waves for quarks proceeds along similar lines as for leptons. The Kähler coupling
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corresponds to n = 1 (and s = 1/2) and right handed U type quark corresponds to a right handed
neutrino. U quark type solutions are constructed as solutions of form

UR = uRΦs==1 ,

where uR possesses the quantum numbers of covariantly constant right handed neutrino with
Kähler charge n = 3 (s = 3/2). Hence Φs has s = −1. For DR one has

DR = drΦs=2 .

dR has s = −3/2 so that one must have s = 2. For UR the representations (p + 1, p) with triality
one are obtained and p = 0 corresponds to color triplet. For DR the representations (p, p + 2) are
obtained and color triplet is missing from the spectrum (p = 0 corresponds to 6̄).

The CP2 contributions to masses are given by the formula

m2(U, p) =
m2

1

3
[
p2 + 3p + 2

]
, p ≥ 0 ,

m2(D, p) =
m2

1

3
[
p2 + 4p + 4

]
, p ≥ 0 . (86)

Left handed quarks are obtained by applying Dirac operator to right handed quark states and
mass formulas and color partial wave spectrum are the same as for right handed quarks.

The color contributions to p-adic mass squared are integer valued if m2
0/3 is taken as a fun-

damental p-adic unit of mass squared. This choice has an obvious relevance for p-adic mass
calculations since canonical identification does not commute with a division by integer. More
precisely, the images of number xp in canonical identification has a value of order 1 when x is
a non-trivial rational whereas for x = np the value is n/p and extremely is small for physically
interesting primes. This choice does not however affect the spectrum of massless states but can
affect the spectrum of light states in case of electro-weak gauge bosons.

7 Exotic states

The possibility of exotic states poses a serious problem. The assumption that only free many
fermion states are possible eliminates a huge number of exotics and only the degrees of freedom
associated with ground states remain. Coset construction implying duality between SCV and
SKMV algebras removes a huge number of exotic states but genuinely SC contributions with a
vanishing conformal weight are possible. Also other kinds of exotic states are predicted.

7.1 What kind of exotic states one expects

The physical consequences of the exotic light leptons, quarks, and bosons are considered in the
chapter devoted to the New Physics [F5]. Here it only suffices to make a short summary. Consider
first what kind of exotic particles extended conformal symmetries predict.

1. Massless states are expected to become massive by p-adic thermodynamics meaning that
one has superposition of states with Super Kac-Moody conformal weight equal to Super
Virasoro conformal weight and annihilated by SKMV and SCV generators Gn,Ln, n > 0.
This condition allows degeneracy since there are many manners to create a ground state
with a given angular momentum and color quantum numbers and conformal weight n and
annihilated by Ln, n < 0, by using super-canonical generators. The combinations of super-
canonical generators which do not belong to SKM algebra and create singlets in color and
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rotational degrees of freedom would be responsible for this degeneracy. The condition that
the states in the superposition are annihilated by Gn, Ln, n > 0, reduces the number of the
massless states.

2. The original expectation that the spectrum has N = 1 space-time super-symmetry seems to
be wrong. The understanding of the super-conformal symmetries as at parton level allowed
to identify partonic super-conformal symmetries in terms of a generalization of large N = 4
SCA with Kac-Moody group extended to contain also canonical transformations of δH±.
Thus an immense generalization of string model conformal symmetries is in question. This
allows to conclude that sparticles in the sense of super Poincare symmetry are certainly
absent. This does not affect the mass calculations in any manner and dramatically reduces
the number of exotic states.

3. If elementary particles correspond to CP2 type extremals, one can argue that all massless
exotic massless particles can be constructed using colored generators and by color confinement
cannot induce macroscopic long range interactions.

4. The possibility that conformal weights have imaginary part expressible as linear combination
of imaginary parts of zeros of ζ function associated with the modified Dirac operator satisfying
Riemann hypothesis brings in additional richness of structure. A possible interpretation is
that the non-vanishing imaginary part allows to distinguish between positive energy particle
propagating into geometric future and negative energy propagating to the geometric past.
Phase conjugate photons for which dissipation occurs in time reversed direction would be
basic examples of this. Dissipation would be visible already in the mathematical description
of partons. The imaginary part of the conformal weight might relate directly to the decay
rate of the particle or to the length of the time interval separating positive energy particle
and corresponding negative energy particle in zero energy ontology where all physical states
have vanishing net quantum numbers [C2].

These exotic particles relate to the extended conformal symmetries. There are also other kinds
of exotic particles.

1. The existence of fermionic families suggests the existence of higher bosonic families too. If
gauge bosons correspond to wormhole contacts, three families would mean that bosons are
labelled by pairs (gi, gj) of genera associated with wormhole contacts and U(3) dynamical
gauge symmetry emerges naturally. The observed gauge bosons would correspond to SU(3)
singlets which do not induced genus changing transitions. The new view about particle decay
as a branching of partonic 2-surface is consistent with this picture but not the earlier stringy
view. Only three fermion families are predicted if g > 2 topologies for partonic 2-surfaces
correspond to free many-handle states rather than bound states as for g < 3 topologies: who
this could happen is discussed in [F1].

2. Also p-adically scaled up copies of various particles are possible as well as scaled-up/scaled-
down versions of QCD associated with both quarks [F8] and colored leptons [F7]. There is
now quite a lot of evidence that neutrino masses depend on environment [37]: this dependence
could have an explanation in terms of topological condensation occurring in several p-adic
length scales.

3. Dark matter hierarchy based on the spectrum of Planck constants [A9] infinite number of
zoomed up copies of ordinary elementary particles with same mass spectrum.

4. Electro-weak doublet Higgs particle would be present in the spectrum and be identifiable as
wormhole contact, contrary to the long held beliefs. Also q − q bound states of M89 hadron
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physics such that quark and anti-quark have parallel spins and relative angular momentum
L = 1 could mimic scalar mesons. The effective couplings of these states to leptons and
quarks could mimic the couplings of Higgs boson to some degree. Scalar bound states of
heavy quarks are also present in ordinary hadron physics.

7.2 Are S2 degrees frozen for elementary particles?

As the system approaches CP2 type extremal, radial waves in δM4
± for 2-D partonic surface having

0-dimensional δM4
± projection become constant. Hence one might argue that the radial conformal

weights vanish for SC. This would however lead to a contradiction since radial conformal weights
are absolutely essential for p-adic mass calculations. Parton picture allows to understand what
really happens. artons correspond to light-like 3-surfaces correspond to wormhole throats resulting
when CP2 type extremal is glued to the space-time sheet with Minkowskian signature of induced
metric so that M4 projection is necessarily 3-dimensional although metrically 2-D.

One can however consider the possibility that the S2 degrees of freedom associated with δM4
+

are essentially frozen at elementary particle level with graviton forming a possible exception. The
reason would be simply the extremely small size of wormhole contacts implying that the super-
canonical generators are essentially constant in S2 degrees of freedom. Only color Hamiltonians
would generate tachyonic ground states as null states.

7.3 More detailed considerations

The exotic states can emerge both from super-canonical and super Kac-Moody sectors. The
tachyonic ground states correspond to null states of super-canonical Super Virasoro representations
having negative conformal weight h < 0 and satisfying the condition Ln|h〉 = 0, n < 0. Massless
state is obtained by applying super Hamiltonians and SKM generators to this state. Null state
conditions certainly reduce dramatically the number of ground states since this kind of states are
possible only for special values of c and h. For instance, in N = 2 super-conformal theories only
very special rational values of c and h are possible and the number of null states is finite.

7.3.1 First vision

If one assumes that elementary particles correspond to CP2 type extremals, and that SO(3) Hamil-
tonians with vanishing conformal weight are ”frozen” to a constant at this limit, the predicted exotic
massless states would be generated by color Hamiltonians only. This justifies the hope that new
macroscopic long range forces are absent in TGD Universe. It will be found that this assumption
is not necessary and fails at hadronic space-time sheets.

1. Super-canonical sector. In super-canonical sector S2 generators are frozen to constant and
fermionic generators vanish so that infinite number of generators otherwise giving rise to
degeneracy of massless states is eliminated. Color generators appear as pairs of Hamilto-
nian and its super-partner with an ”anomalous” conformal weight determined by the color
representation, and due to the breaking of conformal symmetry induced by CP2 geome-
try reflecting itself as a massivation of spinor harmonics. Poisson bracket action does not
conserve color conformal weights. This can be understood in terms of the breaking of con-
formal invariance. The ground states with negative conformal weight would be generated by
color Hamiltonians and their spartners having same conformal weights. Color confinement
suggests that the massless particles generated from these ground states cannot give rise to
macroscopic long range forces.

2. SKM generators in NS representation.
N-S sector gives rise to super generators with conformal weight n+1/2,n ≥ 0 since h = −1/2
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generators are not allowed by the representation used. Therefore the dangerous n = 0
operators are absent.

3. Ramond sector of SKM algebra corresponding to SO(3)× SU(2)L × U(1) holonomies.
n = 0 generators are absent in holonomy degrees of freedom. That the right handed neutrino
is covariantly constant, is annihilated by charge matrices, and is orthogonal with λ 6= 0 modes
of the modified Dirac operator D, implies that n = 0 fermionic generators vanish. Also the
covariant constancy of em charge matrix and the anomalous conformal weight hc = 2 of the
left-handed electro-weak charge matrices is of importance. Hence no spartners are predicted
in SO(3)× SU(2)L × U(1) degrees of freedom.

4. Ramond sector of SKM algebra corresponding to SO3)× SU(3) isometries.
i) n = 0 bosonic SO(3) × SU(3) SKM generators act directly as operators jArDr on the
Hamiltonians of X7 appearing in the definitions of configuration space Hamiltonians. In the
same manner jArDr transforms jBkΓk to j[A,B]kΓk and does not affect the representation
of HB . Hence the KM algebra corresponding to isometries does not increase the ”particle”
number defined as the number of X2 non-local operators in the state nor change the repre-
sentation of SO(3)× SU(3).
ii) Fermionic SO(3) generators have hc = 0 but for n = 0 they vanish by the orthogonality
of νR and λ > 0 eigen modes of D. Fermionic SU(3) SKM generators have an anomalous
conformal weight hc = 1.

The cautious conclusion would be that massless exotics are all created by color Hamiltonians
and their spartners subject to the condition that tachyonic ground state is annihilated by SCV
and SKMV generators Gn, Ln, n < 0 . This might be enough to achieve consistency with the
experimental facts since color confinement would restrict the new long range interactions to a finite
range.

7.3.2 Improved vision

An objection against the effective absence of rotational degrees of freedom came from the realization
that super-canonical degrees of freedom are absolutely essential for the understanding of the hadron
mass spectrum [F4, F5].

1. Hadronic space-time sheet labelled k = 107 would be a carrier of many-particle state of
super-canonical bosons carrying both spin and color quantum numbers. The additivity of
the conformal weight implies string mass formula and gives a connection with the hadronic
string model. String tension is predicted correctly and the states of the Regge trajectories
correspond to many particle states for super-canonical bosons. Hadron masses are predicted
with an accuracy better than one per cent.

2. The super-canonical part of the hadron is dark matter in a strict sense of the word and
highly analogous to a black hole. This leads a model explaining RHIC events, where black-
hole like states would be created in the collisions of heavy Gold nuclei by the fusion of the
hadronic space-time sheets involving also the materialization of collision energy to super-
canonical matter [34, 35]. The model also explains the re-incarnated Pomeron [33]. The
strange cosmic ray events as well as the observation of cosmic rays with energy larger than
the limiting energy 5× 1010 GeV could be understood as resulting when extremely energetic
proton has lost its valence quarks (Pomeron) and propagates as a mini black-hole without
interactions with microwave background. LHC gives a possibility to test this picture.

3. The realization that neutron star can be regarded as a gigantic hadron leads to a microscopic
description of black-holes as super-canonical black-holes and the requirement that horizon
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radius equals to Compton length fixes the Planck constant to h̄gr = 2GM2. This form is
a generalization of the gravitational Planck constant appearing in the Bohr quantization of
planetary orbits [D6].

To sum up, it seems that all basic ingredients of TGD Universe are present already at the level
of the standard physics.

8 Particle massivation

In TGD framework p-adic thermodynamics provides a microscopic theory of particle massivation.
The idea is very simple. The mass of the particle results from a thermal mixing of the massless
states with CP2 mass excitations of super-conformal algebra. In p-adic thermodynamics the Boltz-
mann weight exp(−E/T ) does not exist in general and must be replaced with pL0/Tp which exists
for Virasoro generator L0 if the inverse of the p-adic temperature is integer valued Tp = 1/n. The
expansion in powers of p converges extremely rapidly for physical values of p, which are rather large.
Therefore the three lowest terms in expansion give practically exact results. Thermal massivation
does not not necessarily lead to light states and this drops a large number of exotic states from
the spectrum of light particles. The partition functions of N-S and Ramond type representations
are not changed in TGD framework despite the fact that fermionic super generators carry fermion
numbers and are not Hermitian. Thus the practical calculations are relatively straightforward.

In free fermion picture the p-adic thermodynamics in the boson sector is for fermion-antifermion
states associated with the two throats of the bosonic wormhole. The question is whether the
thermodynamical mass squared is just the sum of the two independent fermionic contributions for
Ramond representations or should one use N-S type representation resulting as a tensor product
of Ramond representations. The latter option looks more plausible.

The overall conclusion about p-adic mass calculations is that fermionic mass spectrum is pre-
dicted in an excellent accuracy but that the thermal masses of the intermediate gauge bosons
come 20-30 per cent to large for Tp = 1 and are completely negligible for Tp = 1/2. This forces
to consider very seriously the possibility that thermal contribution to the bosonic mass is negligi-
ble and that TGD can, contrary to the original expectations, provide dynamical Higgs field as a
fundamental field. The identification of Higgs as wormhole contact would provide this field. The
bound state character of the boson states could be responsible for Tp < 1.

An alternative but not very plausible manner to understand the massivation of electro-weak
gauge bosons is as reflecting the breaking of conformal invariance due to the lacking covariant
constancy of the left handed parts of the charge matrices of electro-weak gauge bosons. In the
following some aspects of the calculations are discussed: the rather extensive calculations can be
found from the three chapters ”p-Adic Particle Massivation:....” of [6].

8.1 Partition functions are not changed

One must write Super Virasoro conditions for Ln and both Gn and G†n rather than for Ln and Gn

as in the case of the ordinary Super Virasoro algebra, and it is a priori not at all clear whether the
partition functions for the Super Virasoro representations remain unchanged. This requirement is
however crucial for the construction to work at all in the fermionic sector, since even the slightest
changes for the degeneracies of the excited states can change light state to a state with mass of
order m0 in the p-adic thermodynamics.

8.1.1 Super conformal algebra

Super Virasoro algebra is generated by the bosonic the generators Ln (n is an integer valued index)
and by the fermionic generators Gr, where r can be either integer (Ramond) or half odd integer
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(NS). Gr creates quark/lepton for r > 0 and antiquark/antilepton for r < 0. For r = 0, G0 creates
lepton and its Hermitian conjugate anti-lepton. The defining commutation and anti-commutation
relations are the following:

[Lm, Ln] = (m− n)Lm+n +
c

2
m(m2 − 1)δm,−n ,

[Lm, Gr] = (
m

2
− r)Gm+r ,

[
Lm, G†r

]
= (

m

2
− r)G†m+r ,

{Gr, G
†
s} = 2Lr+s +

c

3
(r2 − 1

4
)δm,−n ,

{Gr, Gs} = 0 ,

{G†r, G†s} = 0 . (87)

By the inspection of these relations one finds some results of a great practical importance.

1. For the Ramond algebra G0, G1 and their Hermitian conjugates generate the r ≥ 0, n ≥ 0
part of the algebra via anti-commutations and commutations. Therefore all what is needed
is to assume that Super Virasoro conditions are satisfied for these generators in case that
G0 and G†0 annihilate the ground state. Situation changes if the states are not annihilated
by G0 and G†0 since then one must assume the gauge conditions for both L1, G1 and G†1
besides the mass shell conditions associated with G0 and G†0, which however do not affect
the number of the Super Virasoro excitations but give mass shell condition and constraints
on the state in the cm spin degrees of freedom. This will be assumed in the following. Note
that for the ordinary Super Virasoro only the gauge conditions for L1 and G1 are needed.

2. NS algebra is generated by G1/2 and G3/2 and their Hermitian conjugates (note that G3/2

cannot be expressed as the commutator of L1 and G1/2) so that only the gauge conditions
associated with these generators are needed. For the ordinary Super Virasoro only the
conditions for G1/2 and G3/2 are needed.

8.1.2 Conditions guaranteing that partition functions are not changed

The conditions guaranteing the invariance of the partition functions in the transition to the mod-
ified algebra must be such that they reduce the number of the excitations and gauge conditions
for a given conformal weight to the same number as in the case of the ordinary Super Virasoro.

1. The requirement that physical states are invariant under G ↔ G† corresponds to the charge
conjugation symmetry and is very natural. As a consequence, the gauge conditions for G
and G† are not independent and their number reduces by a factor of one half and is the same
as in the case of the ordinary Super Virasoro.

2. As far as the number of the thermal excitations for a given conformal weight is considered,
the only remaining problem are the operators GnG†n, which for the ordinary Super Virasoro
reduce to GnGn = L2n and do not therefore correspond to independent degrees of freedom.
In present case this situation is achieved only if one requires

(GnG†n −G†nGn)|phys〉 = 0 . (88)

It is not clear whether this condition must be posed separately or whether it actually follows
from the representation of the Super Virasoro algebra automatically.
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8.1.3 Partition function for Ramond algebra

Under the assumptions just stated, the partition function for the Ramond states not satisfying any
gauge conditions

Z(t) = 1 + 2t + 4t2 + 8t3 + 14t4 + .... , (89)

which is identical to that associated with the ordinary Ramond type Super Virasoro.
For a Super Virasoro representation with N = 5 sectors, of main interest in TGD, one has

ZN (t) = ZN=5(t) =
∑

D(n)tn

= 1 + 10t + 60t2 + 280t3 + ... . (90)

The degeneracies for the states satisfying gauge conditions are given by

d(n) = D(n)− 2D(n− 1) . (91)

corresponding to the gauge conditions for L1 and G1. Applying this formula one obtains for N = 5
sectors

d(0) = 1 , d(1) = 8 , d(2) = 40 , d(3) = 160 . (92)

The lowest order contribution to the p-adic mass squared is determined by the ratio

r(n) =
D(n + 1)

D(n)
,

where the value of n depends on the effective vacuum weight of the ground state fermion. Light
state is obtained only provided the ratio is integer. The remarkable result is that for lowest lying
states the ratio is integer and given by

r(1) = 8 , r(2) = 5 , r(3) = 4 . (93)

It turns out that r(2) = 5 gives the best possible lowest order prediction for the charged lepton
masses and in this manner one ends up with the condition hvac = −3 for the tachyonic vacuum
weight of Super Virasoro.

8.1.4 Partition function for NS algebra

For NS representations the calculation of the degeneracies of the physical states reduces to the
calculation of the partition function for a single particle Super Virasoro

ZNS(t) =
∑

n

z(n/2)tn/2 . (94)

Here z(n/2) gives the number of Super Virasoro generators having conformal weight n/2. For a
state with N active sectors (the sectors with a non-vanishing weight for a given ground state) the
degeneracies can be read from the N-particle partition function expressible as

ZN (t) = ZN (t) . (95)
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Single particle partition function is given by the expression

Z(t) = 1 + t1/2 + t + 2t3/2 + 3t2 + 4t5/2 + 5t3 + ... . (96)

Using this representation it is an easy task to calculate the degeneracies for the operators of
conformal weight ∆ acting on a state having N active sectors.

One can also derive explicit formulas for the degeneracies and calculation gives

D(0, N) = 1 , D(1/2, N) = N ,

D(1, N) = N(N+1)
2 , D(3/2, N) = N

6 (N2 + 3N + 8) ,
D(2, N) = N

2 (N2 + 2N + 3) , D(5/2, N) = 9N(N − 1) ,
D(3, N) = 12N(N − 1) + 2N(N − 1) .

(97)

as a function of the conformal weight ∆ = 0, 1/2, ..., 3.
The number of states satisfying Super Virasoro gauge conditions created by the operators of a

conformal weight ∆, when the number of the active sectors is N , is given by

d(∆, N) = D(∆, N)−D(∆− 1/2, N)−D(∆− 3/2, N) . (98)

The expression derives from the observation that the physical states satisfying gauge conditions
for G1/2, G3/2 satisfy the conditions for all Super Virasoro generators. For Tp = 1 light bosons
correspond to the integer values of d(∆ + 1, N)/d(∆, N) in case that massless states correspond
to thermal excitations of conformal weight ∆: they are obtained for ∆ = 0 only (massless ground
state). This is what is required since the thermal degeneracy of the light boson ground state
would imply a corresponding factor in the energy density of the black body radiation at very high
temperatures. For the physically most interesting nontrivial case with N = 2 two active sectors
the degeneracies are

d(0, 2) = 1 , d(1, 2) = 1 , d(2, 2) = 3 , d(3, 2) = 4 . (99)

8.2 Fundamental length and mass scales

The basic difference between quantum TGD and super-string models is that the size of CP2 is not
of order Planck length but much larger: of order 104 Planck lengths. This conclusion is forced by
several consistency arguments, the mass scale of electron, and by the cosmological data allowing to
fix the string tension of the cosmic strings which are basic structures in TGD inspired cosmology.

8.2.1 The relationship between CP2 radius and fundamental p-adic length scale

One can relate CP2 ’cosmological constant’ to the p-adic mass scale: for kL = 1 one has

m2
0 =

m2
1

kL
= m2

1 = 2Λ . (100)

kL = 1 results also by requiring that p-adic thermodynamics leaves charged leptons light and leads
to optimal lowest order prediction for the charged lepton masses. Λ denotes the ’cosmological
constant’ of CP2 (CP2 satisfies Einstein equations Gαβ = Λgαβ with cosmological term).

The real counterpart of the p-adic thermal expectation for the mass squared is sensitive to the
choice of the unit of p-adic mass squared which is by definition mapped as such to the real unit
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in canonical identification. Thus an important factor in the p-adic mass calculations is the correct
identification of the p-adic mass squared scale, which corresponds to the mass squared unit and
hence to the unit of the p-adic numbers. This choice does not affect the spectrum of massless
states but can affect the spectrum of light states in case of intermediate gauge bosons.

1. For the choice

M2 = m2
0 ↔ 1 (101)

the spectrum of L0 is integer valued.

2. The requirement that all sufficiently small mass squared values for the color partial waves
are mapped to real integers, would fix the value of p-adic mass squared unit to

M2 =
m2

0

3
↔ 1 . (102)

For this choice the spectrum of L0 comes in multiples of 3 and it is possible to have a first
order contribution to the mass which cannot be of thermal origin (say m2 = p). This indeed
seems to happen for electro-weak gauge bosons.

p-Adic mass calculations [F3] allow to relate m0 to electron mass and to Planck mass by the
formula

m0

mPl
=

1√
5 + Ye

× 2127/2 × me

mPl
,

mPl =
1√
G

. (103)

For Ye = 0 this gives m0 = .2437× 10−3mPl.
This means that CP2 radius R defined by the length L = 2πR of CP2 geodesic is roughly 104

times the Planck length. More precisely, using the relationship

Λ =
3

2R2
= M2 = m2

0 ,

one obtains for

L = 2πR = 2π

√
3
2

1
m0

' 3.1167× 104
√

G for Ye = 0 . (104)

The result came as a surprise: the first belief was that CP2 radius is of order Planck length. It
has however turned out that the new identification solved elegantly some long standing problems
of TGD.

Ye 0 .5 .7798
(m0/mPl)103 .2437 .2323 .2266
KR × 10−7 2.5262 2.7788 2.9202
(LR/

√
G)× 10−4 3.1580 3.3122 3.3954

K × 10−7 2.4606 2.4606 2.4606
(L/

√
G)× 10−4 3.1167 3.1167 3.1167

KR/K 1.0267 1.1293 1.1868
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Table 1. Table gives the values of the ratio KR = R2/G and CP2 geodesic length L = 2πR for
Ye ∈ {0, 0.5, 0.7798}. Also the ratio of KR/K, where K = 2× 3× 5× 7× 11× 13× 17× 19× 23×
2−3 ∗ (15/17) is rational number producing R2/G approximately is given.

The value of top quark mass favors Ye = 0 and Ye = .5 is largest value of Ye marginally
consistent with the limits on the value of top quark mass.

8.2.2 CP2 radius as the fundamental p-adic length scale

The identification of CP2 radius as the fundamental p-adic length scale is forced by the Super
Virasoro invariance. The pleasant surprise was that the identification of the CP2 size as the
fundamental p-adic length scale rather than Planck length solved many long standing problems of
older TGD.

1. The earliest formulation predicted cosmic strings with a string tension larger than the crit-
ical value giving the angle deficit 2π in Einstein’s equations and thus excluded by General
Relativity. The corrected value of CP2 radius predicts the value k/G for the cosmic string
tension with k in the range 10−7 − 10−6 as required by the TGD inspired model for the
galaxy formation solving the galactic dark matter problem.

2. In the earlier formulation there was no idea as how to derive the p-adic length scale L ∼
104

√
G from the basic theory. Now this problem becomes trivial and one has to predict grav-

itational constant in terms of the p-adic length scale. This follows in principle as a prediction
of quantum TGD. In fact, one can deduce G in terms of the p-adic length scale and the action
exponential associated with the CP2 extremal and gets a correct value if αK approaches fine
structure constant at electron length scale (due to the fact that electromagnetic field equals
to the Kähler field if Z0 field vanishes).

Besides this, one obtains a precise prediction for the dependence of the Kähler coupling
strength on the p-adic length scale by requiring that the gravitational coupling does not
depend on the p-adic length scale. p-Adic prime p in turn has a nice physical interpreta-
tion: the critical value of αK is same for the zero modes with given p. As already found,
the construction of graviton state allows to understand the small value of the gravitational
constant in terms of a de-coherence caused by multi-p fractality reducing the value of the
gravitational constant from L2

p to G.

3. p-Adic length scale is also the length scale at which super-symmetry should be restored
in standard super-symmetric theories. In TGD this scale corresponds to the transition to
Euclidian field theory for CP2 type extremals. There are strong reasons to believe that
sparticles are however absent and that super-symmetry is present only in the sense that
super-generators have complex conformal weights with Re(h) = ±1/2 rather than h = 0.
The action of this super-symmetry changes the mass of the state by an amount of order CP2

mass.

8.3 Spectrum of elementary particles

The assumption that k = 1 holds true for all particles forces to modify the earlier construction of
quark states. This turns out to be possible without affecting the p-adic mass calculations whose
outcome depend in an essential manner on the ground state conformal weights hgr of the fermions
(which can be negative).

8.3.1 Leptonic spectrum

For k = 1 the leptonic mass squared is integer valued in units of m2
0 only for the states satisfying
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p mod 3 6= 2 .

Only these representations can give rise to massless states. Neutrinos correspond to (p, p) rep-
resentations with p ≥ 1 whereas charged leptons correspond to (p, p + 3) representations. The
earlier mass calculations demonstrate that leptonic masses can be understood if the ground state
conformal weight is hgr = −1 for charged leptons and hgr = −2 for neutrinos.

The contribution of color partial wave to conformal weight is hc = (p2 + 2p)/3, p ≥ 1, for
neutrinos and p = 1 gives hc = 1 (octet). For charged leptons hc = (p2 + 5p + 6)/3 gives hc = 2
for p = 0 (decuplet). In both cases super-canonical operator O must have a net conformal weight
hsc = −3 to produce a correct conformal weight for the ground state. p-adic considerations
suggests the use of operators O with super-canonical conformal weight z = −1/2 − i

∑
nkyk,

where sk = 1/2 + iyk corresponds to zero of Riemann ζ. If the operators in question are color
Hamiltonians in octet representation net super-canonical conformal weight hsc = −3 results. The
tensor product of two octets with conjugate super-canonical conformal weights contains both octet
and decuplet so that singlets are obtained. What strengthens the hopes that the construction is
not adhoc is that the same operator appears in the construction of quark states too.

Right handed neutrino remains essentially massless. p = 0 right handed neutrino does not
however generate N = 1 space-time (or rather, imbedding space) super symmetry so that no
sparticles are predicted. The breaking of the electro-weak symmetry at the level of the masses
comes out basically from the anomalous color electro-weak correlation for the Kaluza-Klein partial
waves implying that the weights for the ground states of the fermions depend on the electromagnetic
charge of the fermion. Interestingly, TGD predicts leptohadron physics based on color excitations
of leptons and color bound states of these excitations could correspond topologically condensed on
string like objects but not fundamental string like objects.

8.3.2 Spectrum of quarks

Earlier arguments [F4] related to a model of CKM matrix as a rational unitary matrix suggested
that the string tension parameter k is different for quarks, leptons, and bosons. The basic mass
formula read as

M2 = m2
CP2

+ kL0 .

The values of k were kq = 2/3 and kL = kB = 1. The general theory however predicts that k = 1
for all particles.

1. By earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for
the eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as unit, color conformal
weight hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p + 1, p) type

representation and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark
belonging (p, p + 2) type representation and obeying hc(D) = (p2 + 4p + 4)/3. Only these
states can be massless since color Hamiltonians have integer valued conformal weights.

2. In the recent case p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) = −1 and
hgr(D) = 0 reproduce the previous results for quark masses required by the construction
of CKM matrix. This forces the super-canonical operator O to compensate the anomalous
color to have a net conformal weight hsc = −3 just as in the leptonic case. The facts that the
values of p are minimal for spinor harmonics and the super-canonical operator is same for
both quarks and leptons suggest that the construction is not had hoc. The real justification
would come from the demonstration that hsc = −3 defines null state for SCV: this would
also explain why hsc would be same for all fermions.
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3. It would seem that the tensor product of the spinor harmonic of quarks (as also leptons)
with Hamiltonians gives rise to a large number of exotic colored states which have same
thermodynamical mass as ordinary quarks (and leptons). Why these states have smaller
values of p-adic prime that ordinary quarks and leptons, remains a challenge for the theory.
Note that the decay widths of intermediate gauge bosons pose strong restrictions on the
possible color excitations of quarks. On the other hand, the large number of fermionic color
exotics can spoil the asymptotic freedom, and it is possible to have and entire p-adic length
scale hierarchy of QCDs existing only in a finite length scale range without affecting the
decay widths of gauge bosons.

The following table summarizes the color conformal weights and super-canonical vacuum con-
formal weights for the elementary particles.

L νL U D W γ, G, g
hvac -3 -3 -3 -3 -2 0
hc 2 1 2 3 2 0

Table 2. The values of the parameters hvac and hc assuming that k = 1. The value of
hvac ≤ −hc is determined from the requirement that p-adic mass calculations give best possible
fit to the mass spectrum.

8.3.3 Photon, graviton and gluon

For photon, gluon and graviton the conformal weight of the p = 0 ground state is hgr = hvac = 0.
The crucial condition is that h = 0 ground state is non-degenerate: otherwise one would obtain
several physically more or less identical photons and this would be seen in the spectrum of black-
body radiation. This occurs if one can construct several ground states not expressible in terms of
the action of the Super Virasoro generators.

The only possibility to get exactly massless states in thermal sense is to have ∆ = 0 state
with one active sector so that NS thermodynamics becomes trivial due to the absence of the
thermodynamical excitations satisfying the gauge conditions. For neutral gauge bosons this is
indeed achieved. For Tp = 1/2, which is required by the mass spectrum of intermediate gauge
bosons, the thermal contribution to the mass squared is however extremely small even for W
boson.

8.4 p-Adic thermodynamics does not explain the masses of intermediate
gauge bosons

The requirement that the electron-intermediate gauge boson mass ratios are sensible, serves as
a stringent test for the hypothesis that intermediate gauge boson masses result from the p-adic
thermodynamics. It seems that the only possible option is that the parameter k has same value
for both bosons, leptons, and quarks:

kB = kL = kq = 1 .

In this case all gauge bosons have D(0) = 1 and there are good changes to obtain boson masses
correctly. k = 1 together with Tp = 1 implies that the thermal masses of very many boson states
are extremely heavy so that the spectrum of the boson exotics is reduced drastically. For Tp = 1/2
the thermal contribution to the mass squared is completely negligible.

Contrary to the original optimistic beliefs based on calculational error, it seems however impos-
sible to predict W/e and Z/e mass ratios correctly in p-adic thermodynamics scenario. Although
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the errors are of order 20-30 percent, they are enough to exclude p-adic thermodynamics explana-
tion for the massivation of gauge bosons.

1. The thermal mass squared for a boson state with N active sectors (non-vanishing vacuum
weight) is determined by the partition function for the tensor product of N NS type Super
Virasoro algebras. The degeneracies of the excited states as a function of N and the weight
∆ of the operator creating the massless state are given in the table below.

2. Both W and Z must correspond to N = 2 active Super Virasoro sectors for which D(1) = 1
and D(2) = 3 so that (using the formulas of p-adic thermodynamics [6, F3]) the thermal mass
squared is m2 = kB(p + 5p2) for Tp = 1. The second order contribution to the thermal mass
squared is extremely small so that Weinberg angle vanishes in the thermal approximation.
kB = 1 gives Z/e mass-ratio which is about 22 per cent too high. The thermal prediction
for W-boson mass is the same as for Z0 mass and thus even worse since the two masses are
related M2

W = M2
Zcos2(θW ). For Tp = 1/2 thermal masses are completely negligible.

3. It seems that the Achilles’s heel of the p-adic thermodynamics is bosonic sector whereas the
weak point of the standard model is fermionic sector. This suggests that it might be possible
to combine these two approaches. Tp = 1/2 is certainly the only possible p-adic temperature
for intermediate gauge bosons so that gauge boson masses should result by a TGD variant
of the Higgs mechanism. Contrary to the long-held belief, it is indeed possible to identify a
candidate for Higgs boson with correct quantum numbers also in TGD framework. The point
is that in quaternion-conformal Kac Moody algebra su(3) = u(2) + t Kac-Moody charges
decompose to two separately conserved parts Qg and QJ corresponding to variations with
respect to induced metric and induced Kähler form. QJ charges in u(2) sub-algebra of su(3)
are identifiable as electro-weak charges whereas the charges in the complement t of u(2) have
interpretation as Higgs field possessing correct couplings to electro-weak gauge bosons. If t
generates coherent state, standard electro-weak Higgs mechanism follows as a consequence.
Sigma model type description in which the coupling to Higgs bosons induces only small shifts
of fermion masses, suggests itself. In fact, this kind of mechanism has been also applied in
the TGD inspired model of CP breaking in case of ordinary hadrons [F5].

4. An alternative option is based on the observation that the charge matrices of W and of left
handed part of Z0 are not covariantly constant and have the correct group theoretical prop-
erties to yield breaking of conformal invariance and thus mass squared as a thermodynamical
vacuum expectation value.

5. The minimum p-adic mass squared is the p-adic mass squared unit m2
0/3. This corresponds

in a reasonable approximation to the mass of W boson so that the mass scale would be
predicted correctly. The calculation of leptonic masses however requires the use of m2

0 as
a mass squared unit for which intermediate gauge boson masses are smaller than one unit.
The way out of the difficulty is based on the use of a variant of the canonical identification I
acting as I1(r/s) = I(r)/I(s). This map respects under certain additional conditions various
symmetries and is the only sensible possibility at the level of scattering amplitudes. This
variant predicts that the real counterpart of m2 = (m/n)p is (m/n)/p rather than of order
CP2 squared so that intermediate gauge boson masses can be smaller than one unit even if
O(p) p-adically, and allows an elegant group theoretic description of mW /mZ mass ratio in
terms of Weinberg angle. This point is discussed in [F4, F5].
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N, ∆ 0 1/2 1 3/2 2 5/2 3
2 1 1 1 3 3 4 4
3 1 2 3 9 11
4 1 3 5 19 26
5 1 4 10 24 150

Table 3. Degeneracies d(∆, N) of the operators satisfying NS type gauge conditions as a
function of the number N of the active sectors and of the conformal weight ∆ of the operator.
Only those degeneracies, which are needed in the mass calculation for bosons are listed.

8.5 Some probabilistic considerations

There are uniqueness problems related to the mapping of p-adic probabilities to real ones. These
problems find a nice resolution from the requirement that the map respects probability conserva-
tion. The implied modification of the original mapping does not change measurably the predictions
for the masses of light particles.

8.5.1 How unique the map of p-adic probabilities and mass squared values are
mapped to real numbers is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers is
not completely unique.

1. Canonical identification I :
∑

xnpn → ∑
xnp−n takes care of this mapping but does not

respect the sum of probabilities so that the real images I(pn) of the probabilities must be
normalized. This is a somewhat alarming feature.

2. The modification of the canonical identification mapping rationals by the formula I(r/s) =
I(r)/I(s) has appeared naturally in various applications, in particular because it respects
unitarity of unitary matrices with rational elements with r < p, s < p. In the case of
p-adic thermodynamic the formula I(g(n)pn/Z) → I(g(n)pn)/I(Z) would be very natural
although Z need not be rational anymore. For g(n) < p the real counterparts of the p-adic
probabilities would sum up to one automatically for this option. One cannot deny that this
option is more convincing than the original one. The generalization of this formula to map
p-adic mass squared to a real one is obvious.

3. Options 1) and 2) differ dramatically when the n = 0 massless ground state has ground state
degeneracy D > 1. For option 1) the real mass is predicted to be of order CP2 mass whereas
for option 2) it would be by a factor 1/D smaller than the minimum mass predicted by the
option a). Thus option 2) would predict a large number of additional exotic states. For those
states which are light for option 1), the two options make identical predictions as far as the
significant two lowest order terms are considered. Hence this interpretation would not change
the predictions of the p-adic mass calculations in this respect. Option 2) is definitely more
in accord with the real physics based intuitions and the main role of p-adic thermodynamics
would be to guarantee the quantization of the temperature and fix practically uniquely the
spectrum of the ”Hamiltonian”.

8.5.2 Under what conditions the mapping of p-adic ensemble probabilities to real
probabilities respects probability conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of
independent elementary events such that the number of events of type i is Ni. The probabilities
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are given by pi = Ni/N and N =
∑

Ni is the total number of elementary events. Even in the
case that N is infinite as a real number it is natural to map the p-adic probabilities to their real
counterparts using the rational canonical identification I(pi) = I(Ni)/I(N). Of course, Ni and N
exist as well defined p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer
becomes obvious by looking at the pinary expansions of Ni and N . If the integers Ni (possibly
infinite as real integers) have pinary expansions having no common pinary digits, the sum of
probabilities is conserved in the map. Note that this condition can assign also to a finite ensemble
with finite number of a unique value of p.

This means that the selection of a basis for independent events corresponds to a decomposition
of the set of integers labelling pinary digits to disjoint sets and brings in mind the selection of
orthonormalized basis of quantum states in quantum theory. What is physically highly non-
trivial that this ”orthogonalization” alone puts strong constraints on probabilities of the allowed
elementary events. One can say that the probabilities define distributions of pinary digits analogous
to non-negative probability amplitudes in the space of integers labelling pinary digits, and the
probabilities of independent events must be orthogonal with respect to the inner product defined
by point-wise multiplication in the space of pinary digits.

p-Adic thermodynamics for which Boltzman weights g(E)exp(−E/T ) are replaced by g(E)pE/T

such that one has g(E) < p and E/T is integer valued, satisfies this constraint. The quantization
of E/T to integer values implies quantization of both T and ”energy” spectrum and forces so called
super conformal invariance in TGD applications, which is indeed a basic symmetry of the theory.

There are infinitely many ways to choose the elementary events and each choice corresponds
to a decomposition of the infinite set of integers n labelling the powers of p to disjoint subsets.
These subsets can be also infinite. One can assign to this kind of decomposition a resolution which
is the poorer the larger the subsets involved are. p-Adic thermodynamics would represent the
situation in which the resolution is maximal since each set contains only single pinary digit. Note
the analogy with the basis of completely localized wave functions in a lattice.

9 Modular contribution to the mass squared

The success of the p-adic mass calculations gives convincing support for the generation-genus
correspondence. The basic physical picture is following.

1. Fermionic mass squared is dominated by partonic contribution, which is sum of cm and mod-
ular contributions: M2 = M2(cm)+M2(mod). Here ’cm’ refers to the thermal contribution.
Modular contribution can be assumed to depend on the genus of the boundary component
only.

2. If Higgs contribution for diagonal (g, g) bosons (singlets with respect to ”topological” SU(3))
dominates, the genus dependent contribution can be assumed to be negligible. This should
be due to the bound state character of the wormhole contacts reducing thermal motion and
thus the p-adic temperature.

3. Modular contribution to the mass squared can be estimated apart from an overall propor-
tionality constant. The mass scale of the contribution is fixed by the p-adic length scale
hypothesis. Elementary particle vacuum functionals are proportional to a product of all even
theta functions and their conjugates, the number of even theta functions and their conjugates
being 2N(g) = 2g(2g + 1). Also the thermal partition function must also be proportional to
2N(g):th power of some elementary partition function. This implies that thermal/ quantum
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expectation M2(mod) must be proportional to 2N(g). Since single handle behaves effec-
tively as particle, the contribution must be proportional to genus g also. The success of the
resulting mass formula encourages the belief that the argument is essentially correct.

The challenge is to construct theoretical framework reproducing the modular contribution to
mass squared. There are two alternative manners to understand the origin modular contribution.

1. The realization that super-canonical algebra is relevant for elementary particle physics leads
to the idea that two thermodynamics are involved with the calculation of the vacuum con-
formal weight as a thermal expectation. The first thermodynamics corresponds to Super
Kac-Moody algebra and second thermodynamics to super-canonical algebra. This approach
allows a first principle understanding of the origin and general form of the modular contri-
bution without any need to introduce additional structures in modular degrees of freedom.
The very fact that super-canonical algebra does not commute with the modular degrees of
freedom explains the dependence of the super-canonical contribution on moduli.

2. The earlier approach was based on the idea that he modular contribution could be regarded
as a quantum mechanical expectation value of the Virasoro generator L0 for the elementary
particle vacuum functional. Quantum treatment would require generalization the concepts
of the moduli space and theta function to the p-adic context and finding an acceptable
definition of the Virasoro generator L0 in modular degrees of freedom. The problem with
this interpretation is that it forces to introduce, not only Virasoro generator L0, but the
entire super Virasoro algebra in modular degrees of freedom. One could also consider of
interpreting the contribution of modular degrees of freedom to vacuum conformal weight
as being analogous to that of CP2 Laplacian but also this would raise the challenge of
constructing corresponding Dirac operator. Obviously this approach has become obsolete.

The thermodynamical treatment taking into account the constraints from that p-adicization is
possible might go along following lines.

1. In the real case the basic quantity is the thermal expectation value h(M) of the conformal
weight as a function of moduli. The average value of the deviation ∆h(M) = h(M)− h(M0)
over moduli space M must be calculated using elementary particle vacuum functional as
a modular invariant partition function. Modular invariance is achieved if this function is
proportional to the logarithm of elementary particle vacuum functional: this reproduces
the qualitative features basic formula for the modular contribution to the conformal weight.
p-Adicization leads to a slight modification of this formula.

2. The challenge of algebraically continuing this calculation to the p-adic context involves several
sub-tasks. The notions of moduli space Mp and theta function must be defined in the p-
adic context. An appropriately defined logarithm of the p-adic elementary particle vacuum
functional should determine ∆h(M). The average of ∆h(M) requires an integration over
Mp. The problems related to the definition of this integral could be circumvented if the
integral in the real case could be reduced to an algebraic expression, or if the moduli space
is discrete in which case integral could be replaced by a sum.

3. The number theoretic existence of the p-adic Θ function leads to the quantization of the
moduli so that the p-adic moduli space is discretized. Accepting the sharpened form of
Riemann hypothesis [E8], the quantization means that the imaginary resp. real parts of
the moduli are proportional to integers resp. combinations of imaginary parts of zeros of
Riemann Zeta. This quantization could occur also for the real moduli for the maxima of
Kähler function. This reduces the problematic p-adic integration to a sum and the resulting
sum defining 〈∆h〉 converges extremely rapidly for physically interesting primes so that only
the few lowest terms are needed.
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9.1 Conformal symmetries and modular invariance

The full SKM invariance means that the super-conformal fields depend only on the conformal
moduli of 2-surface characterizing the conformal equivalence class of the 2-surface. This means
that all induced metrics differing by a mere Weyl scaling have same moduli. This symmetry is
extremely powerful since the space of moduli is finite-dimensional and means that the entire infinite-
dimensional space of deformations of parton 2-surface X2 degenerates to a finite-dimensional mod-
uli spaces under conformal equivalence. Obviously, the configurations of given parton correspond
to a fiber space having moduli space as a base space. Super-canonical degrees of freedom could
break conformal invariance in some appropriate sense.

9.1.1 Conformal and SKM symmetries leave moduli invariant

Conformal transformations and super Kac Moody symmetries must leave the moduli invariant.
This means that they induce a mere Weyl scaling of the induced metric of X2 and thus preserve
its non-diagonal character ds2 = gzzdzdz. This is indeed true if

1. the Super Kac Moody symmetries are holomorphic isometries of X7 = δM4
± × CP2 made

local with respect to the complex coordinate z of X2, and

2. the complex coordinates of X7 are holomorphic functions of z.

Using complex coordinates for X7 the infinitesimal generators can be written in the form

JAn = znjAkDk + znjAkDk . (105)

The intuitive picture is that it should be possible to choose X2 freely. It is however not always
possible to choose the coordinate z of X2 in such a manner that X7 coordinates are holomorphic
functions of z since a consistency of inherent complex structure of X2 with that induced from X7

is required. Geometrically this is like meeting of two points in the space of moduli.
Lorentz boosts produce new inequivalent choices of S2 with their own complex coordinate: this

set of complex structures is parameterized by the hyperboloid of future light cone (Lobatchevski
space or mass shell), but even this is not enough. The most plausible manner to circumvent the
problem is that only the maxima of Kähler function correspond to the holomorphic situation so
that super-canonical algebra representing quantum fluctuations would induce conformal anomaly.

9.1.2 The isometries of δM4
+ are in one-one correspondence with conformal transfor-

mations

For CP2 factor the isometries reduce to SU(3) group acting also as canonical transformations. For
δM4

+ = S2 × R+ one might expect that isometries reduce to Lorentz group containing rotation
group of SO(3) as conformal isometries. If rM corresponds to a macroscopic length scale, then X2

has a finite sized S2 projection which spans a rather small solid angle so that group SO(3) reduces
in a good approximation to the group E2 × SO(2) of translations and rotations of plane.

This expectation is however wrong! The light-likeness of δM4
+ allows a dramatic generalization

of the notion of isometry. The point is that the conformal transformations of S2 induce a conformal
factor |df/dw|2 to the metric of δM4

+ and the local radial scaling rM → rM/|df/dw| compensates
it. Hence the group of conformal isometries consists of conformal transformations of S2 with
compensating radial scalings. This compensation of two kinds of conformal transformations is the
deep geometric phenomenon which translates to the condition LSC − LSKM = 0 in the sub-space
of physical states. Note that an analogous phenomenon occurs also for the light-like CDs X3

l with
respect to the metrically 2-dimensional induced metric.
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The X2-local radial scalings rM → rM (z, z) respect the conditions gzz = gzz = 0 so that a mere
Weyl scaling leaving moduli invariant results. By multiplying the conformal isometries of δM4

+ by
zn (z is used as a complex coordinate for X2 and w as a complex coordinate for S2) a conformal
localization of conformal isometries would result. Kind of double conformal transformations would
be in question. Note however that this requires that X7 coordinates are holomorphic functions
of X2 coordinate. These transformations deform X2 unlike the conformal transformations of X2.
For X3

l similar local scalings of the light like coordinate leave the moduli invariant but lead out of
X7.

9.1.3 Canonical transformations break the conformal invariance

In general, infinitesimal canonical transformations induce non-vanishing components gzz, gzz of the
induced metric and can thus change the moduli of X2. Thus the quantum fluctuations represented
by super-canonical algebra and contributing to the configuration space metric are in general moduli
changing. It would be interesting to know explicitly the conditions (the number of which is the
dimension of moduli space for a given genus), which guarantee that the infinitesimal canonical
transformation is moduli preserving.

9.2 The physical origin of the genus dependent contribution to the mass
squared

Different p-adic length scales are not enough to explain the charged lepton mass ratios and an
additional genus dependent contribution in the fermionic mass formula is required. The general
form of this contribution can be guessed by regarding elementary particle vacuum functionals in
the modular degrees of freedom as an analog of partition function and the modular contribution to
the conformal weight as an analog of thermal energy obtained by averaging over moduli. p-Adic
length scale hypothesis determines the overall scale of the contribution.

The exact physical origin of this contribution has remained mysterious but super-canonical
degrees of freedom represent a good candidate for the physical origin of this contribution. This
would mean a sigh of relief since there would be no need to assign conformal weights, super-algebra,
Dirac operators, Laplacians, etc.. with these degrees of freedom.

9.2.1 Thermodynamics in super-canonical degrees of freedom as the origin of the
modular contribution to the mass squared

The following general picture is the simplest found hitherto.

1. Elementary particle vacuum functionals are defined in the space of moduli of surfaces X2

corresponding to the maxima of Kähler function. There some restrictions on X2. In partic-
ular, p-adic length scale poses restrictions on the size of X2. There is an infinite hierarchy
of elementary particle vacuum functionals satisfying the general constraints but only the
lowest elementary particle vacuum functionals are assumed to contribute significantly to the
vacuum expectation value of conformal weight determining the mass squared value.

2. The contribution of Super-Kac Moody thermodynamics to the vacuum conformal weight h
coming from Virasoro excitations of the h = 0 massless state is estimated in the previous
calculations and does not depend on moduli. The new element is that for a partonic 2-surface
X2 with given moduli, Virasoro thermodynamics is present also in super-canonical degrees
of freedom.

Super-canonical thermodynamics means that, besides the ground state with hgr = −hSC

with minimal value of super-canonical conformal weight hSC , also thermal excitations of
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this state by super-canonical Virasoro algebra having hgr = −hSC − n are possible. For
these ground states the SKM Virasoro generators creating states with net conformal weight
h = hSKM − hSC − n ≥ 0 have larger conformal weight so that the SKM thermal average
h depends on n. It depends also on the moduli M of X2 since the Beltrami differentials
representing a tangent space basis for the moduli space M do not commute with the super-
canonical algebra. Hence the thermally averaged SKM conformal weight hSKM for given
values of moduli satisfies

hSKM = h(n,M) . (106)

3. The average conformal weight induced by this double thermodynamics can be expressed as
a super-canonical thermal average 〈·〉SC of the SKM thermal average h(n, M):

h(M) = 〈h(n,M)〉SC =
∑

pn(M)h(n) , (107)

where the moduli dependent probability pn(M) of the super-canonical Virasoro excitation
with conformal weight n should be consistent with the p-adic thermodynamics. It is conve-
nient to write h(M) as

h(M) = h0 + ∆h(M) , (108)

where h0 is the minimum value of h(M) in the space of moduli. The form of the elementary
particle vacuum functionals suggest that h0 corresponds to moduli with Im(Ωij) = 0 and thus
to singular configurations for which handles degenerate to one-dimensional lines attached to
a sphere.

4. There is a further averaging of ∆h(M) over the moduli space M by using the modulus
squared of elementary particle vacuum functional so that one has

h = h0 + 〈∆h(M)〉M . (109)

Modular invariance allows to pose very strong conditions on the functional form of ∆h(M).
The simplest assumption guaranteing this and thermodynamical interpretation is that ∆h(M)
is proportional to the logarithm of the vacuum functional Ω:

∆h(M) ∝ −log(
Ω(M)
Ωmax

) . (110)

Here Ωmax corresponds to the maximum of Ω for which ∆h(M) vanishes.

9.2.2 Justification for the general form of the mass formula

The proposed general ansatz for ∆h(M) provides a justification for the general form of the mass
formula deduced by intuitive arguments.
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1. The factorization of the elementary particle vacuum functional Ω into a product of 2N(g) =
2g(2g + 1) terms and the logarithmic expression for ∆h(M) imply that the thermal expec-
tation values is a sum over thermal expectation values over 2N(g) terms associated with
various even characteristics (a, b), where a and b are g-dimensional vectors with components
equal to 1/2 or 0 and the inner product 4a · b is an even integer. If each term gives the same
result in the averaging using Ωvac as a partition function, the proportionality to 2Ng follows.

2. For genus g ≥ 2 the partition function defines an average in 3g − 3 complex-dimensional
space of moduli. The analogy of 〈∆h〉 and thermal energy suggests that the contribution is
proportional to the complex dimension 3g − 3 of this space. For g ≤ 1 the contribution the
complex dimension of moduli space is g and the contribution would be proportional to g.

〈∆h〉 ∝ g ×X(g) for g ≤ 1 ,

〈∆h〉 ∝ (3g − 3)×X(g) for g ≥ 2 ,

X(g) = 2g(2g + 1) . (111)

If X2 is hyper-elliptic for the maxima of Kähler function, this expression makes sense only
for g ≤ 2 since vacuum functionals vanish for hyper-elliptic surfaces.

3. The earlier argument, inspired by the interpretation of elementary particle vacuum functional
as a partition function, was that each factor of the elementary particle vacuum functional
gives the same contribution to 〈∆h〉, and that this contribution is proportional to g since
each handle behaves like a particle:

〈∆h〉 ∝ g ×X(g) . (112)

The prediction following from the previous differs by a factor (3g − 3)/g for g ≥ 2. This
would scale up the dominant modular contribution to the masses of the third g = 2 fermionic
generation by a factor

√
3/2 ' 1.22. One must of course remember, that these rough

arguments allow g− dependent numerical factors of order one so that it is not possible to
exclude either argument.

9.3 Generalization of Θ functions and quantization of p-adic moduli

The task is to find p-adic counterparts for theta functions and elementary particle vacuum func-
tionals. The constraints come from the p-adic existence of the exponentials appearing as the
summands of the theta functions and from the convergence of the sum. The exponentials must be
proportional to powers of p just as the Boltzmann weights defining the p-adic partition function.
The outcome is a quantization of moduli so that integration can be replaced with a summation
and the average of ∆h(M) over moduli is well defined.

It is instructive to study the problem for torus in parallel with the general case. The ordinary
moduli space of torus is parameterized by single complex number τ . The points related by SL(2, Z)
are equivalent, which means that the transformation τ → (Aτ + B)/(Cτ + D) produces a point
equivalent with τ . These transformations are generated by the shift τ → τ + 1 and τ → −1/τ .
One can choose the fundamental domain of moduli space to be the intersection of the slice Re(τ) ∈
[−1/2, 1/2] with the exterior of unit circle |τ | = 1. The idea is to start directly from physics and
to look whether one might some define p-adic version of elementary particle vacuum functionals
in the p-adic counter part of this set or in some modular invariant subset of this set.
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Elementary particle vacuum functionals are expressible in terms of theta functions using the
functions Θ4[a, b]Θ

4
[a, b] as a building block. The general expression for the theta function reads

as

Θ[a, b](Ω) =
∑

n

exp(iπ(n + a) · Ω · (n + a))exp(2iπ(n + a) · b) . (113)

The latter exponential phase gives only a factor ±i or ±1 since 4a · b is integer. For p mod 4 = 3
imaginary unit exists in an algebraic extension of p-adic numbers. In the case of torus (a, b) has
the values (0, 0), (1/2, 0) and (0, 1/2) for torus since only even characteristics are allowed.

Concerning the p-adicization of the first exponential appearing in the summands in Eq. 113,
the obvious problem is that π does not exists p-adically. The introduction of the scaled variable
τ̂ = πτ resolves this problem. The second modification is the replacement of the factors exp(X)
with pX/log(p) in order to achieve a rapid p-adic convergence of the sum defining the theta function.
This requires a further scaling so that one has Ωp = πΩ/log(p) is the appropriate variable and the
terms in the sum are apart from the phase factor of form pi(n+a)·Ωp·(n+a).

If the exponents

pi(n+a)·Im(Ωij,p)·(n+a) = p−a·Im(Ωij,p)·a × p−2a·Im(Ωij,p)n × p−n·Im(Ωij,p)·n

are integer powers of p, Θ[a,b] exist in Rp. A milder condition is that only the building blocks

Θ4[a, b]Θ
4
[a, b] exist in Rp. The problematic factor is the first exponent since the components of

the vector a can have values 1/2 and 0 and its existence implies a quantization of Im(Ωij,p) as

Im(Ωij,p) = −Knij , nij ∈ Z , nij ≥ 1 , (114)

K = 4 guarantees the existence of Θ functions and K = 1 the existence of elementary particle
vacuum functionals. Obviously the sum defining Θ converges rapidly with respect to the p-adic
norm.

The problem is that the condition Im(Ωij,p) > 0 is not satisfied. There is however no reason
why the p-adic theta function could not be defined by changing the sign of the exponents so that
one would have

Θ[a, b](Ω)p =
∑

n

p−i(n+a)·Ωp·(n+a) × exp [2iπ(n + a) · b] ,

Im(Ωij,p) = Knij , nij ≥ 1 . (115)

K = 4 guarantees the existence of Θ functions in Rp and K = 1 the existence of elementary
vacuum functional in Rp: in this case Θ[a,b] exists in appropriate algebraic extension of Rp. Note
that a similar change of sign must be performed in p-adic thermodynamics for powers of p to map
p-adic probabilities to real ones.

A further requirement is that the phases p−iRe(Ωij,p)/4 exist p-adically. A weaker condition that
only the phases p−iRe(Ωij,p) exist p-adically guarantees that elementary particle vacuum functionals
exist p-adically. The condition that piy exists for certain preferred values of y for all values of prime
p is encountered repeatedly in the algebraic continuation of quantum TGD to p-adic context.
The sharpening of the Riemann Hypothesis [E8] stating that the partition functions 1/(1 − pz)
appearing in the product expansion of Rieman Zeta in various p-adic number fields exist for the
zeros z = 1/2 + iy of Riemann Zeta, is number theoretically highly attractive.
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This conjecture implies that piy is in general a product of a phase factor exp(i2πm/n) in some
algebraic extension of p-adic numbers and of a Pythagorean phase (k + il)/

√
k2 + l2, k2 + l2 = n2.

A potential problem is that this phase factor does not possess unit p-adic norm in the general case.
The explicit form for the allowed (k, l) and (l, k) pairs is given by

k = 2rs ,

l = r2 − s2 ,

n = r2 + s2 . (116)

where r and s are relatively prime integers, not both odd. Note that (l, k) is also an allowed
solution. An important point to be noticed is that the p-adic norm of Pythagorean phase is not
larger than one for physically most interesting primes satisfying p mod 4 = 3 since n mod 4 = 1
holds true as a simple calculation shows. This guarantees that the phase factors of the Θ function
cannot spoil the p-adic convergence of the sum defining the p-adic theta function.

The sharpening of the Riemann hypothesis, when combined with the requirement that the log-
arithmic radial waves (rM/r0)iz exists in some finite-dimensional extension of any p-adic number
fields when rM/r0 is rational valued, implies that the radial conformal weights z of the super-
canonical algebra correspond to the zeros of Zeta and their appropriate combinations. The quan-
tization condition is

Re(Ωij,p) = K
∑

nkyk , (117)

where yk correspond to zeros of Zeta. K = 4 guarantees that Θ functions exist p-adically. K = 1
is enough to guarantee the existence of elementary particle vacuum functionals.

In the real context the quantization of moduli of torus would correspond to

τ = K(
∑

nkyk + in)× log(p)
π

,

|τ | = K

√
n2 + (

∑

k

nkyk)2 ,

Φ = atan(
n∑

k nkyk
) . (118)

K = 1 guarantees the existence of elementary particle vacuum functionals and K = 4 the existence
of Theta functions. The ratio for the complex vectors defining the sides of the plane parallelogram
defining torus via the identification of the parallel sides is quantized. In other words, the angles Φ
between the sides and the ratios of the sides given by |τ | have quantized values.

The quantization rules for the moduli of the higher genera read as

Ωij = K
[∑

nk(i, j)yk + in(i, j)
]
× log(p)

π
,

(119)

If the quantization rules hold true also for the maxima of Kähler function in the real context, there
are good hopes that the p-adicized expression for ∆h is obtained by a simple algebraic continuation
of the real formula. Thus p-adic length scale characterizes partonic surface X2 rather than the
light like causal determinant X3

l containing X2. Therefore the idea that various p-adic primes
label various X3

l connecting fixed partonic surfaces X2
i would not be correct.
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The set of the moduli allowed by the quantization rules is not invariant under modular trans-
formations. For instance, in the case of torus the SL(2, Z) Möbius transformations Ω → Ω + n
and Ω → 1/Ω lead out of the allowed moduli space. This is not however a problem if there ar
no modular transformations relating quantized moduli so that they can be thought of as forming
single fundamental domain containing possibly non-equivalent moduli from several fundamental
domains in the conventional sense of the word.

Quite generally, the quantization of moduli means that the allowed 2-dimensional shapes form
a lattice and are thus additive. It also means that the maxima of Kähler function obey a linear
superposition in an extreme abstract sense. The proposed number theoretical quantization is ex-
pected to apply for any complex space allowing some preferred complex coordinates. In particular,
configuration space of 2-surfaces could allow this kind of quantization in the complex coordinates
naturally associated with isometries and this could allow to define configuration space integration,
at least the counterpart of integration in zero mode degrees of freedom, as a summation.

9.4 The calculation of the modular contribution 〈∆h〉 to the conformal
weight

The quantization of the moduli implies that the integral over moduli can be defined as a sum
over moduli. The theta function Θ[a, b](Ω)p(τp) is proportional to pa·aIm(Ωij,p) = pKnijm(a)/4 for
a · a = m(a)/4, where K = 1 resp. K = 4 corresponds to the existence existence of elementary
particle vacuum functionals resp. theta functions in Rp. These powers of p can be extracted
from the thetas defining the vacuum functional. The numerator of the vacuum functional gives

(pn)2K
∑

a,b
m(a). The numerator gives (pn)2K

∑
a,b

m(a0), where a0 corresponds to the minimum
value of m(a). a0 = (0, 0, .., 0) is allowed and gives m(a0) = 0 so that the p-adic norm of the
denominator equals to one. Hence one has

|Ωvac(Ωp)|p = p
−2nK

∑
a,b

m(a) (120)

The sum converges extremely rapidly for large values of p as function of n so that in practice only
few moduli contribute.

The definition of log(Ωvac) poses however problems since in log(p) does not exist as a p-adic
number in any p-adic number field. The argument of the logarithm should have a unit p-adic
norm. The simplest manner to circumvent the difficulty is to use the fact that the p-adic norm
|Ωp|p is also a modular invariant, and assume that the contribution to conformal weight depends
on moduli as

∆hp(Ωp) ∝ log(
Ωvac

|Ωvac|p ) . (121)

The sum defining 〈∆hp〉 converges extremely rapidly and gives a result of order O(p) p-adically as
required.

The p-adic expression for 〈∆hp〉 should result from the corresponding real expression by an
algebraic continuation. This encourages the conjecture that the allowed moduli are quantized for
the maxima of Kähler function, so that the integral over the moduli space is replaced with a sum
also in the real case, and that ∆h given by the double thermodynamics as a function of moduli
can be defined as in the p-adic case. The positive power of p multiplying the numerator could be
interpreted as a degeneracy factor. In fact, the moduli are not primary dynamical variables in the
case of the induced metric, and there must be a modular invariant weight factor telling how many
2-surfaces correspond to given values of moduli. The power of p could correspond to this factor.
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10 Appendix: Gauge bosons in the original scenario

The construction of gauge boson states is more or less trivial if bosons correspond to wormhole
contacts and has been already discussed. The construction of gauge boson states is is more intricate
process than in the original scenario which did not involve super-canonical algebra and the effective
2-dimensionality. Since the construction gives some insights about the construction in the case that
the only partonic fermion states are free many-fermion states plus the states obtained from them
by applying super-canonical and Super-Kac Moody algebra, I decided to keep this section.

10.1 Bi-locality of boson states

The gauge boson could correspond to either a local fermion current contracted with jAk or to a
bi-local operator.

1. For a local operator no normal ordering of the current would be needed since at a given space-
time sheet and for TGD quantization avoiding infinite vacuum energy, the current would
contain only anti-commuting creation operators of a positive (negative) energy fermion and
negative (positive) energy anti-fermion. The vacuum expectation value would involve only
the contractions of fermion and anti-fermion with the legs of the current and a well-defined
and finite integral over X2 would result. This is however not enough: also the norms of the
boson states must be finite and locality implies an infinite norm as an integral of δ(0) over
X2. Hence local operators seem to be excluded.

2. If photon is created by a bi-local operator, it would involve a kind of structure function in
X2 ×X2 allowing visualization as a line connecting two points x and y having fermion and
anti-fermion at its ends. The bi-local current would be sum of two terms

B =
∫

X2×X2
dVxdVyB(x, y)

[
Ψ(x)E(y)Ψ(y) + Ψ(x)E(x)Ψ(y)

]
,

E = jAkγk . (122)

The vacuum expectation value determining the vertex would boil down to a correlation
function defined as integral over X2 × X2 for this Hamiltonian and bilinear of functions
formed from positive energy fermion and anti-fermion. B(x, y) could be determined by the
super conformal invariance as a correlation function.

Conformal invariance suggests that correlation functions obeying simple power scaling laws as
a function of the distance r between fermion and anti-fermion are associated with the boson states.
The power law holds true with respect to the distance r measured in the induced metric.

The distance r between fermion and antifermion in the induced metric of X2 is expressed to
behave fractally as function of ∆rM , where rM is the light like radial coordinate of δM4

+. For large
values of rM r(∆rM ) is expected to grow very slowly since X2 becomes almost light like in this
direction. For small distance the growth is expected to be very rapid by the p-adic fractality of
X2 meaning that X2 becomes 2-D version for the coast line of Britain. The scaling behavior

r

r0
= x∆ , ∆ < 1 ,

x =
∆rM

rM,0
(123)

is expected. A good guess for rM,0 is as a p-adic length scale: rM,0 = Lp.
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10.2 Bosonic charge matrices, conformal invariance, and coupling con-
stants

Bosons are represented by fermion-antifermion bilinears. The requirement that boson state has
a finite norm implies that bosons are bi-local operators creating fermion antifermion states in
X2. The bilinear representing the boson can be regarded as a second quantized version of the
charge matrix of the charge represented by the boson in question. Also a polarization vector
contracted with M4 gamma matrices is involved. In the case of graviton/gluon charge matrix
involve momentum operators of M4/color rotation generators of CP2 acting in center of mass
degrees of freedom acting of the second quantized spinor fields. The normalization factors of the
bosonic states determine their couplings to fermion pairs, which appear as fundamental couplings:
the proportionality 1/

√
N ∝ g between the coupling g and proportionality factor is predicted.

10.3 The ground states associated with gauge bosons

The experience about p-adic mass calculations gives some hints about the ground state conformal
weights of intermediate gauge bosons.

1. If p-adic temperature is T = 1/2 for bosons instead of T = 1 for fermions, p-adic ther-
modynamics does not significantly contribute to boson masses except if ground states have
vanishing conformal weight so that ground state degeneracy is absent and T = 1/2 gives
completely negligible thermal contribution to the conformal weight.

2. If the mass in the case of gauge bosons is dominantly due to the coupling to Higgs, all
electro-weak bosons could have vanishing conformal weights in the ground state. This would
be in conflict with the assumption hvac(W ) = −2 of the earlier model following from the
following argument. W boson is not a color singlet although it does not of course belong to
an irreducible representation of SU(3). One could argue that W charge matrix and the left
handed part of Z charge matrix correspond to a j = 1 triplet of SUL(2) ⊂ SU(3) and thus
has hc = j(j + 1) = 2 for j = 1. Also, because W behaves like eν pair the W charge matrix
must have the color conformal weight hc = 2 of eν. Also the requirement that the ground
state conformal weight is conserved in electro-weak vertices supports this picture. hc = 2
would be compensated by the negative conformal weight of the super-canonical operator
from super-canonical generators.

Z0 would be superposition of states with different super-canonical ground state conformal
weights. The left handed part of charge matrix proportional to I3

L would have ground state
super-canonical conformal weight hvac = −2 and the vectorial part of Z0 charge matrix
proportional to Qem would have hc = 0 and there would be no compensating super-canonical
factor. Photon of course has a vanishing ground state conformal weight.

3. In the case of gluons the isometry generator JA = jAkDk does not change the representation
associated with a color Hamiltonian. The assumption that this operator carries a conformal
weight Re[hc] = 0 conforms with the masslessness of gluon and with the fact that also
translation generators possess a vanishing conformal weight in the stringy mass formula. If
hc has imaginary part, one could distinguish between gluons and their phase conjugates.
If quarks have a net complex conformal weight as previous considerations suggest and if
hadrons have real net conformal weight (by no means necessary), gluons should have net
conformal weights of form h = iy compensating the conformal weights of quarks. Operators
giving rise to purely imaginary conformal weight might serve as counterparts for the color
electric flux tubes connecting the 2-surfaces associated with quarks.
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10.4 Bosonic charge matrices

In the following more detailed forms of bosonic charge matrices are listed.

10.4.1 Photon and intermediate gauge bosons

Photonic charge matrix is of the form

qem = a× Id + b× JklΣkl , (124)

and is covariantly constant. As a consequence photon the charge matrix does not develop any
contribution to the mass squared and for T = 1/2 photon remains in an excellent approximation
massless in p-adic thermodynamics.

The charge matrix of W− is simply the left handed isospin matric I3
L and if the previous

arguments are correct it carries a conformal weight hc = 2. In standard model Z0 charge matrix is
a linear combination of the left handed electro-weak isospin I3

L and electromagnetic charge Qem.

QZ = I3
L − sin2(θW )Qem . (125)

In standard model the mixing of I3
L and Qem corresponds to the mixing of U(1) and U(1)L bosons

by Weinberg angle θW . I3
L has ground state conformal weight −2 whereas for Qem the weight

vanishes.

10.4.2 Graviton and gluon

Graviton corresponds to a charge matrix, or rather charge operator acting on fermion bi-linear,
defined as

O = Eklγk(∂1,l − ∂2,l) (126)

with gamma matrix contracted between fermion and antifermion: here the flatness of M4 is es-
sential. Ekl is the polarization tensor of graviton satisfying obvious constraints. The derivative
operators with respect to Minkowski coordinates act on fermion and anti-fermion.

For the gluon the charge matrix is given by

O = Ekγk(JA
1 − JA

2 ) ,

JA = jAkDk . (127)

Ek is the polarization vector of gluon.
In the case of graviton and gluon the question about the action of the isometry generator arises

since the second quantized induced spinor field Ψ and the correlation function B(x, y) depend
on X2 coordinates rather than imbedding space coordinates. The problem is analogous to that of
interpreting the coordinate z of X2 in the anti-commutators and commutators of Super Kac-Moody
and super-canonical generators as an imbedding space coordinate. As found, the problem can be
circumvented if z is identifiable in terms of a unique imbedding coordinate w for a representative
2-surface Y 2(X2) assignable to a maximum of the Kähler function whose perturbations by super-
canonical algebra appear in the configuration space functional integral.
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10.5 BFF couplings and the general form of bosonic configuration space
spinor fields

Conformal theory alone gives no hint about how the coupling constant appears, and configuration
space-integral is necessary to understand the emergence of the gauge coupling.

1. A strong hint comes from the facts that all BFF coupling constants, except possibly gravita-
tional constant, must be proportional to the Kähler coupling gK . The most natural manner
to achieve this is to require that the bosonic configuration space spinor fields vanish at the
maximum of the Kähler function where the perturbation series is developed. That bosons
should correspond to small perturbations around the maximum of the Kähler function is in
accordance with the assumption that quantum fields correspond to the perturbations around
the extrema of the action functional. This means that one can write B(x, y) in the form

B(x, y) = ∂IKBI(x, y) ,

∂IK(X3) = 0 at the maximum of K . (128)

Gere ∂IK denotes partial derivatives of Kähler function with respect to the configuration
space coordinates XI vanishing at the maximum of K.

2. The functional integral in the lowest order approximation is obtained by expanding B(x, y)
in lowest order to functional Taylor series in using the coordinates XI

B(x, y) = ∂RK ×BI(x, y)×XR , (129)

It is understood that also BI(x, y) allows functional power series expansion as a functional
of X3. In the lowest order approximation the norm N of the boson state is given by the
functional integral

N = 〈
∫

X2×Y 2
B(x, y)B(x, y)dVxdVy〉 = AIJ ×BIJ ,

AIJ = ∂I∂RK × ∂J∂SK × 〈XRXS〉 ,

BIJ =
∫

X2×Y 2
B

I
(x, y)BJ(x, y)dVxdVy . (130)

Here 〈XRXS〉 is a two point function defined by the functional integral over small per-
turbations around the maximum of Kähler function Specifying the coordinates to complex
coordinates and using the covariant Kahler metric GKL = ∂K∂LK as the kinetic term. Since
the contravariant Kähler metric defines the propagator, the lowest order approximation gives

N = GKL ×BKL . (131)

What is nice that the symmetry considerations allow to determine the covariant metric highly
uniquely and the propagator disappears from the final formula. The normalization factor
1/
√

N of the boson state is obviously proportional to gK since the Kähler function K is
proportional to 1/αK .
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3. Fermion boson vertex is indeed proportional to gK . B(x, y) must be expanded in a functional
Taylor series up to a second order term

B(x, y) = ∂RKBI(x, y)XR + ∂RK × ∂SBI(x, y)×XRXS + · · · . (132)

The general expression of the BFF vertex is

VBFF =
1√
N
〈
∫

X2×Y 2
B(x, y)ΓdVxdVy〉 =

1√
N

A ,

A =
∫

X2×Y 2
∂IB

I
(x, y)ΓdVxdVy . (133)

The propagator compensates the second order derivatives of Kähler function in the functional
integral average, and the vertex is indeed proportional to gK .
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