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Abstract

The number of DNA triplets is 64. This inspires the idea that DNA sequence could be
interpreted as an expansion of an integer using 64 as the base. Hence given DNA triplet would
represent some integer in {0,1....,63} (sequences of I Ching symbols give a beautiful realization
of these sequences).

The observation which puts bells ringing is that the number of primes smaller than 64 is
18. Together with 0, and 1 this makes 20: the number of aminoacids!

1. Questions

The finding just described stimulates a whole series of questions.
Do aminoacids correspond to integers in the set S = {primes < 64} ∪ {0, 1}. Does

aminoacid sequence have an interpretation as a representation as a sequence of integers con-
sisting of 0, 1 and products of primes p = 2, ..., 61? Does the aminoacid representing 0 have
an interpretation as kind of period separating from each other structural units analogous to
genes representing integers in the sequence so that we would quite literally consists of se-
quences of integers? Do 0 and 1 have some special biological properties, say the property of
being biologically inert both at the level of DNA and aminoacids?

Does genetic code mediate a map from integers 0,...,63 to set S such that 0 and 1 are
mapped to 0 and 1? If so then three integers 2 ≤ n ≤ 63 must correspond to stopping sign
codons rather than primes. What stopping sign codon property means at the level of integers?
How the map from integers 2,...,61 to the primes p = 2, ..., 61 is determined?

2. The chain of arguments leading to a number theoretical model for the genetic code

The following chain of arguments induced to large part by concrete numerical experimen-
tation leads to a model providing a partial answer to many of these questions.

a) The partitions of any positive integer n can be interpreted in terms of number theoretical
many boson states. The partitions for which a given integer appears at most once have
interpretation in terms of fermion states. These states could be identified as bosonic and
fermionic states of Super Virasoro representation with given conformal weight n.

b) The generalization of Shannon entropy by replacing logarithms of probabilities with the
logarithms of p-adic norms of probabilities allows to have systems with negative entropy and
thus positive negentropy. The natural requirement is that n corresponds to such prime p ≤ 61
that the negentropy assigned to n is maximal in some number theoretic thermodynamics. The
resulting correspondence n → p(n) naturally determined the genetic code.

c) One can assign to the bosonic and fermionic partitions a number theoretic thermody-
namics defined by a Hamiltonian. Purely bosonic and fermionic thermodynamics are defined
by corresponding partition functions ZB and ZF whereas supersymmetric option is defined by
the product ZB × ZF . Supersymmetric option turns out to be the most realistic one.

d) The simplest option is that Hamiltonian depends only on the number r of the integers in
the partition. The dynamics would be in a well defined sense local and would not depend on the
sizes of summands at all. The thermodynamical states would be degenerate with degeneracy
factors given by total numbers dI(n, r) of partitions of type I = B, F . The invariants known
as rank and crank define alternative candidates for the basic building blocks of Hamiltonian.

e) Ordinary exponential thermodynamics based on, say e−H/T = qr−1
0 , q0 a rational num-

ber, produces typically unrealistic genetic codes for which most integers are mapped to small
primes p ≤ 11 and many primes are not coded at all. The idea that realistic code could result
at some critical temperature fails also.

f) Quantum criticality and fractality of TGD Universe inspire the idea that the critical-
ity is an inherent property of Hamiltonian rather than only thermodynamical state. Hence
Hamiltonian can depend only weakly on the character of the partition so that all partitions
contribute with almost equal weights to the partition function. Fractality is achieved if Boltz-
mann factors are given by e−H/T = (r+r0)

n0 so that H(r) = log(r+r0) serves as Hamiltonian
and n0 corresponds to the inverse temperature. The super-symmetric variant of this Hamilto-
nian yields the most realistic candidates for the genetic code and there are good hopes that a

3



number theoretically small perturbation not changing the divisors p ≤ 61 of partition function
but affecting the probabilities could give correct degeneracies.

Numerical experimentation suggests however that this might not be the case and that
simple analytic form of Hamiltonian is too much to hope for. A simple argument however
shows that e−H/T = f(r) could be in quantum critical case be deduced from the genetic code
by fixing the 62 values of f(r) so that the desired 62 correspondences n → p(n) result. The idea
about almost universality of the genetic code would be replaced with the idea that quantum
criticality allows to engineer a genetic code maximizing the total negentropy associated with
DNA triplet-aminoacid pair.

A natural guess is that the map of codons to integers is given as a small deformation
of the map induced by the map of DNA codons to integers induced by the identification of
nucleotides with 4-digits 0,1,2, 3 (this identification depends on whether first, second, or third
nucleotide is in question). This map predicts approximate p(n) = p(n + 1) symmetry having
also a number theoretical justification. One can deduce codon-integer and aminoacid-prime
correspondences and at (at least) two Boltzmann weight distributions f(n) consistent with
the genetic code and Negentropy Maximization Principle constrained by the degeneracies of
the genetic code.

1 Introduction

I have developed several models for genetic code with motivation coming from the belief that there
might be some deeper number theoretical structure involved. The model based on Combinatorial
Hierarchy was discussed in the chapter ”Genes and Memes”. In this chapter two further models
are developed. The chapter begins with a discussion of a model relying on exact A-G symmetry
and almost exact T-C symmetry of the genetic code with respect to the third nucleotide. The idea
is that genetic code has emerged in some sense as a product of 1-code and 2-code via symmetry
breaking. This symmetry breaking is also a central element of both the second model discussed
in this chapter and the number theoretic model developed in the next chapter. Second idea is
that there is some kind of variational principle mathematically analogous to the second law of
thermodynamics involved.

Unfortunately, the physical model developed for the pre-biotic evolution of the genetic code
does not fully support the proposed symmetry breaking scenario. The 2-code in the physical model
trivial in the sense that it is induced by RNA conjugation for RNA doublets whereas 1-code is
deducible directly from wobble rules and is non-deterministic. Symmetry breaking of the physical
model has a beautiful interpretation in terms of fundamental physics but the realization of the
symmetry breaking is not quite what has been assumed in these three models and also in the model
based on Combinatorial Hierarchy discussed in the chapter ”Genes and Memes”. Despite this the
models deserve to be represented.

Since the number theoretic model is the basic topic of this chapter, it is perhaps in order to
describe the basic observations leading to the model. The number of DNA triplets is 64. This
inspires the idea that DNA sequence could be interpreted as an expansion of an integer using 64
as the base. Hence given DNA triplet would represent some integer in {0,1....,63} (sequences of I
Ching symbols give a beautiful representation of numbers in 64 base).

The observation which puts bells ringing is that the number of primes smaller than 64 is 18.
Together with 0, and 1 this makes 20: the number of aminoacids!

1.1 Questions

The finding just described stimulates a whole series of questions.
Do aminoacids correspond to integers in the set S = {primes < 64} ∪ {0, 1}. Does aminoacid

sequence have an interpretation as a representation as a sequence of integers consisting of 0, 1 and
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products of primes p = 2, ..., 61? Does the aminoacid representing 0 have an interpretation as kind
of period separating from each other structural units analogous to genes representing integers in
the sequence so that we would quite literally consists of sequences of integers? Do 0 and 1 have
some special biological properties, say the property of being biologically inert both at the level of
DNA and aminoacids?

Does genetic code mediate a map from integers 0,...,63 to set S such that 0 and 1 are mapped
to 0 and 1? If so then three integers 2 ≤ n ≤ 63 must correspond to stopping sign codons rather
than primes. What stopping sign codon property means at the level of integers? How the map
from integers 2,...,61 to the primes p = 2, ..., 61 is determined?

1.2 The chain of arguments leading to a number theoretical model for
the genetic code

The following chain of arguments induced to large part by concrete numerical experimentation
leads to a model providing a partial answer to many of these questions.

1. The partitions of any positive integer n can be interpreted in terms of number theoretical
many boson states. The partitions for which a given integer appears at most once have
interpretation in terms of fermion states. These states could be identified as bosonic and
fermionic states of Super Virasoro representation with given conformal weight n or even
better, with the states of conformal weight n created by U(1) Kac Moody generators so that
basically a breaking of Kac Moody symmetry would be in question.

2. The generalization of Shannon entropy by replacing logarithms of probabilities with the
logarithms of p-adic norms of probabilities allows to have systems with negative entropy and
thus positive negentropy. The natural requirement is that n corresponds to such prime p ≤ 61
that the negentropy assigned to n is maximal in some number theoretic thermodynamics.
The resulting correspondence n → p(n) would naturally determine the genetic code.

3. One can assign to the bosonic and fermionic partitions a number theoretic thermodynamics
defined by a Hamiltonian. Purely bosonic and fermionic thermodynamics are defined by
corresponding partition functions ZB and ZF whereas supersymmetric option is defined by
the product ZB × ZF .

4. The simplest option is that Hamiltonian depends only on the number r of the integers in the
partition. The dynamics would be in a well defined sense local and would not depend on the
sizes of summands at all. The thermodynamical states would be degenerate with degeneracy
factors given by total numbers dI(n, r) of partitions of type I = B, F . The invariants known
as rank and crank define alternative candidates for basic building blocks of Hamiltonian.

5. Ordinary exponential thermodynamics based on, say e−H/T = qr−1
0 , q0 a rational number,

produces typically unrealistic genetic codes for which most integers are mapped to small
primes p ≤ 11 and many primes are not coded at all. The idea that realistic code could
result at some critical temperature fails also.

6. Quantum criticality and fractality of TGD Universe inspire the idea that the criticality
is an inherent property of Hamiltonian rather than only thermodynamical state. Hence
Hamiltonian can depend only weakly on the character of the partition so that all partitions
contribute with almost equal weights to the partition function.

Fractality is achieved if Boltzmann factors are given by e−H/T = (r + r0)n0 so that H(r) =
log(r+r0) serves as Hamiltonian and n0 corresponds to the inverse temperature. The super-
symmetric variant of this Hamiltonian yields the most realistic candidates for the genetic code
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and one might hope that a number theoretically small perturbation not changing the divisors
p ≤ 61 of partition function but affecting the probabilities could give correct degeneracies.

Numerical experimentation suggests however that this might not be the case and that simple
analytic form of Hamiltonian is too much to hope for. A simple argument however shows
that e−H/T = f(r) could be in quantum critical case be deduced from the genetic code by
fixing the 62 values of f(r) so that the desired 62 correspondences n → p(n) result. The idea
about almost universality of the genetic code would be replaced with the idea that quantum
criticality allows to engineer almost arbitrary genetic code. In this case the model becomes
predictive if the condition that Stot =

∑
n Sp(n)(n) is minimized (negentropy maximization)

with the constraint that each prime is coded and one could consider the possibility that f(n)
and n → p(n) is determined by this condition.

7. Genetic code has an almost unbroken symmetry in the sense that DNA triplets for which last
nucleotide is A or G code for same aminoacid. For T and C this symmetry is slightly broken.
This implies that the number of DNAs coding given aminoacid is almost always even. A very
general number theoretic counterpart for this symmetry as a symmetry of partition function
in the set 59 integers containing other than stopping codons. This symmetry must have fixed
point and this is enough to explain why there is only single aminoacid coded by odd number
DNAs besides singlets.

A natural guess is that the map of codons to integers is given as a small deformation of the
map induced by the map of DNA codons to integers induced by the identification of nucleotides
with 4-digits 0,1,2, 3 (this identification depends on whether first, second, or third nucleotide is in
question). This map predicts approximate p(n) = p(n+1) symmetry having also a number theoret-
ical justification. One can deduce codon-integer and aminoacid-prime correspondences and at (at
least) two Boltzmann weight distributions f(n) consistent with the genetic code and Negentropy
Maximization Principle constrained by the degeneracies of the genetic code.

1.3 What is the physical counterpart of the number theoretical thermo-
dynamics?

The partitions of any positive integer n can be interpreted in terms of number theoretical many
boson states. The partitions for which a given integer appears at most once have interpretation
in terms of fermion states. The states could be identified as bosonic and fermionic states of
Super Virasoro representation with given conformal weight n or even better, with the states of
conformal weight n created by U(1) Kac Moody generators so that basically a breaking of Kac
Moody symmetry would be in question.

The obvious question concerns about the identification of the system in question. For instance,
could it be associated with the light-like boundaries of magnetic flux quanta which are key actors
in TGD based model of topological quantum computation [E9]? If so, then each DNA triplet
would correspond to a portion of magnetic flux quantum characterized by a conformal weight n
determined by the DNA triplet in question. If there is single flux quantum parallel to the DNA
strand, the value of n would be constant only along the portion of length corresponding to single
DNA triplet. This non-conservation of conformal weight along light-like boundary is quite possible
due to the breaking of strict classical non-determinism in TGD Universe having interpretation as
a space-time correlate of quantum non-determinism.

With this identification one might perhaps interpret the integer determined by a given gene
as a code for a topological quantum computer program using 64-base instead of 2-base. Since the
boundaries of the magnetic flux tubes associated with DNA double strands are light-like, they
can be interpreted either as states or as dynamical evolutions. Therefore the light-like boundary
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of the flux tube associated with DNA strand could be interpreted either as a code of a quantum
computer program or as a running quantum computer program [E9].

2 The first model for the evolution of the genetic code

The exact A-G symmetry and almost exact T-C symmetry of the memetic codons with respect
to third nucleotide suggest that genetic code factorizes in a good approximation to a product of
codes associated with DNA doublets and singlets. This suggests factorization also at the level
of pre-amino-acids. Perhaps DNAs triplets have resulted as a symbiosis of singlets and doublets
whereas amino-acids might have been developed via a symbiosis of 2 molecules coded by 4 DNA
singlets and 10 molecules coded by 16 DNA doublets.

In this section a formal model for the evolution of the genetic code based on the approximate
factorization of the genetic code into a product code formed by doublet and singlet codes is
discussed. Also physical model for the evolution of the genetic code is briefly discussed. Product
code as such predicts degeneracies approximately but fails at the level of detailed predictions for
DNA-amino-acid correspondences. A ”volume preserving” flow in discrete DNA space is needed to
produce realistic DNA-amino-acid correspondences. This flow has the general tendency to cluster
amino-acids to connected vertical stripes inside the 4-columns appearing as elements of the 4× 4
code table, whose elements are labeled by the first two bases of DNA triplet. One can invent an
information maximization principle providing a quantitative formulation for this tendency. The
physical model for the evolution modifies the vision about RNA world [20, 21].

2.1 Does amino-acid structure reflect the product structure of the code?

The exact A-G symmetry and the almost exact T-C symmetry of our genetic code supports ap-
proximate 2 × 10 structure such that 16 DNA doublets and 4 DNA singlets code for 10 resp. 2
”pre-amino-acids” which combine to form the real amino-acids. The 3 × 7 decomposition of the
number 21 of amino-acids plus stopping sign suggests 3 × 7 decomposition of the genetic code.
This decomposition is however not favored by the symmetries of the genetic code and will not be
discussed in the sequel.

The coding of amino-acids involves tRNA binding with amino-acids and this means that the
structure of amino-acids need not reflect the product structure of the genetic code and it might
be that only the structure of tRNA reflects the product structure. The study of the amino-acid
geometric structure does not reveal any obvious structural 3×7-ness or 2×10-ness. One can however
wonder whether this kind of structures might be present at more abstract level and present only
in the interactions of tRNA and amino-acids. As will be found, pre-amino-acids correspond most
naturally to RNA sequences so that the product decomposition is realized trivially.

2.2 Number theoretical model for the genetic code

The study of the genetic code allows to deduce the process leading to the breaking of the product
symmetry and T-C symmetry.

2.2.1 Approximate reduction to a product code

The dependence of the amino-acid coded by DNA on the third codon of DNA triplet is weak. This
inspires the guess that triplet code might have evolved as a fusion of doublet code and singlet
codes.

This should be reflected in its structure. The decomposition 20 = 2 × 10 for real amino-acids
suggest that singlet code maps four bases to 2 ’pre-amino-acids’ such that A and G resp. T and
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C are mapped to same pre-amino-acid, and 16 doublets to 10 ’pre-amino-acids’. The exact A-G
symmetry and almost exact T-C symmetry of our genetic code support this interpretation.

Product code hypothesis is very strong since the degeneracies of the product code are products
of the degeneracies for the composite codes so that the number nAB of DNA triplets coding a given
amino-acid having the product form ’AB’, to be referred as the degeneracy of the amino-acid, is
given by the product

nAB = nA × nB

of the degeneracies of the ’pre-amino-acids’ A and B. Here A and B can refer to (A,B) = (3, 7) or
(A,B) = (2, 10) respectively.

The number NAB(n) of amino-acids with given degeneracy n is given by the formula

N12(n) =
∑

n1×n2=n

N1(n1)N2(n2) ,

where N1(n1) resp. N2(n2) is the number of pre-amino-acids with the degeneracy n1 resp. n2.
For 2 × 10 case singlet sector allows only single candidate for the code since the genetic code

has exact A-G symmetry and almost exact T-C symmetry with respect to the last base. Thus
A and G code for the first pre-amino-acid and T and C the second one. A breaking of the T-C
symmetry is needed to obtain realistic code.

2.2.2 Our genetic code as result of symmetry breaking for 2× 10 product code

As found, there are two cases to be considered: 3× 7 T-C asymmetric and 2× 10 T-C symmetric
product code. The approximate T-C symmetry favors strongly 2 × 10 option and 3 × 7 will be
considered only briefly in a separate subsection. On basis of degeneracies alone it is not possible
to distinguish between these codes and 3× 7 code was in fact the first guess for the product code.

In case of 2 × 10 code the decomposition of 16 DNA doublets giving almost the degeneracies
of our genetic code is (3322 111 111).

(2⊕ 2)× (3⊕ 3⊕ 2⊕ 2⊕ 6× 1)

This gives

n 1 2 3 4 6
N(prod) 0 12 0 4 4
N(real) 2 9 2 5 3

Table 5: The numbers N(n) of amino-acids coded by n DNAs for unperturbed 2× 10 product
code and for the real genetic code for 2× 10 option.

It is important to notice that the multiplets appear as doubled pairs corresponding to A-G
and T-C symmetries. One generalized amino-acid (which cannot correspond to stopping sign) is
lacking and must result by a symmetry breaking in which one amino-acid in the code table is
transformed to a new one not existing there. Alternatively three amino-acids are transformed to
stopping signs.

It is easy to find the deformation yielding correct degeneracies by removing DNAs from the
DNA-boxes defined by various values of degeneracies to other boxes and adding them to other
boxes. The rule is simple: taking m DNAs from a box containing n DNAs creates a box with
n−m DNAs and annihilates one n-box:
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N(n) → N(n)− 1 , and N(n−m) → N(n−m) + 1 .

If one adds k of these DNAs to r-box one has

N(r) → N(r)− 1 , N(r + k) → N(r + k) + 1 .

The operation which is not allowed is taking the entire content of a DNA box defined by amino-acid
and adding it to other boxes since this would mean that the amino-acid in question would not be
coded by any DNA. Thus the number of boxes can only grow in this process.

Realistic degeneracies are obtained by a rather simple operation.

1. Take from one 6-plet two amino-acid and move the first of them to 2-plet to get N(6) = 3,
N(4) = 5, N(3) = 1 < 2, N(2) = 11 > 9 and move the second one to hitherto non-existing
singlet to get N(1) = 1.

2. Move one DNA from some doublet to second doublet to get triplet and singlet to get N(1) = 2,
N(2) = 9 and N(3) = 2.

This operation gives correct degeneracies only and it turns out that correct symmetry structure
requires additional operations.

2.2.3 Failures of the product structure and the symmetry breaking as volume pre-
serving flow in DNA space

A slightly broken product structure allows to understand the degeneracies of our genetic code
relatively easily. It however leads also to wrong predictions at the level of DNA-amino-acid corre-
spondence.

1. Exact product structure predicts that all 4-columns XY U , U = A,G, T, C appearing as
elements of the code table labelled by first and second bases of DNA triplet should have
similar amino-acid structure. For 2 × 10 code the prediction is that all 4-columns should
have AABB structure and this prediction breaks down only for AAAA type 4-columns.

2. For 2×10 code a given amino-acid should be coded either by DNA pairs of form (XY A, XY G)
or of form (XY C,XY T ). This is not the case. A given amino-acid tends to appear as
connected vertical stripes inside the elements of the 4 × 4 table (4-columns). For instance,
all 4-columns of form AAAA (A=leu, val, ser, pro, thr, ala, arg, gly) and 3-column ile break
the prediction of the product code.

3. In the case of 2× 10 2n-plet formed by (XYA,XYG)-pairs is accompanied always by an 2n-
plet formed by (XYT,XYC) pairs. By studying the degeneracies of the code one can get idea
about how good these predictions are.

It seems that the breaking of the product symmetry tends to form connected vertical clusters
of amino-acids inside a given element of the 4 × 4 code table but that one cannot regard stripes
longer than 4 elements as connected structures. The 2 × 10 structure is favored by approximate
T-C symmetry, and one can imagine that relatively simple flow in DNA space could yield the
desired condensation of the amino-acids to form connected vertical stripes. The most general flow
is just a permutation of DNAs and obviously preserves the degeneracies of various amino-acids.
There are 64! different permutations but A-G and T-C symmetries reduce their number to 32!.

The idea about discrete volume preserving flow in DNA space can be made more precise. A-G
and T-C gauge symmetries suggest the presence of a discrete symplectic structure. Perhaps one
could regard 16 × 4 DNAs as 16 points of 4-dimensional discrete symplectic space so that the
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canonical symmetries of this space (volume preserving flows) acting now as permutations would
be responsible for the exact A-G gauge invariance and approximate T-C gauge invariance. This
brings in mind the canonical symmetries of CP2 acting as U(1) gauge transformations and acting
as almost gauge symmetries of the Kähler action.

A natural guess is that the DNAs coding same amino-acid tend to be located at the same
column of the 4 × 4 code table before the breaking of the product symmetry. If this is the case
then only vertical flows need to be considered and A-G and T-C symmetries imply that their
number is 8!4 corresponding to the four columns of the table.

The table 6c) summarizes our genetic code. It is convenient to denote the rows consisting of
A-G resp. T-C doublets by X1 and X2. For instance, A1 corresponds to the highest row phe-phe,
ser-ser, tr-tyr, cys-cys and G2 to the row leu-leu, pro-pro, gln-gln, arg-arg.

1. The simplest hypothesis is 2 × 10 option is realized and that the flow permutes entire rows
of the code table consisting of A-G and T-C doublets. From the table below it is clear that
there is a G-C symmetry with respect to the first nucleotide broken only in the third row.
This kind of primordial self-conjugacy symmetry would not be totally surprising since first
and third nucleotides are in a somewhat similar position.

2. There are 3 6-plets leu, ser, and arg, and it is easy to see that one cannot transform them
to the required form in which all 6-plets are on A-G or T-C row alone using this kind of
transformation. For instance, one could require that leu doublets correspond to T-C doublets
before the symmetry breaking. This is achieved by permuting the G1 row with the C2 row.
Since A2 contains also ser-doublet, also ser must correspond to T-C type 6-plet, and since
arg is contained by G2 row, also arg must correspond to T-C type 6-plet. Thus there would
be 4 T-C type 6-plets but the product code gives only 2 of them.

3. The only manner to proceed is to allow mixing of suitable 6-plet of A-G type and 4-plet of
T-C type in the sense that A-G doublet from 6 is moved to T-C doublet inside 4-plet and
T-C doublet in 4-plet is moved to A-G doublet inside 6-plet. The exchange of AG2 (ser
doublet) and TG1 (trh-doublet) represents this kind of permutation.

The tables below summarize the three stages of the construction.

1. Table 6a): Code table before the flow inducing the breaking of the product symmetry

A G T C
A phe ser tyr cys A

phe ser tyr cys G
leu thr asn thr T
leu thr asn thr C

G val ala glu gly T
val ala glu gly C
leu pro gln arg T
leu pro gln arg C

T ile ser stop ser A
ile ser stop ser G

met thr lys arg T
met thr lys arg C

C val ala asp gly A
val ala asp gly G
leu pro his arg A
leu pro his arg G
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2. Table 6b): The code table after the action of the flow inducing the breaking of product
symmetry

A G T C
A phe ser tyr cys A

phe ser tyr cys G
leu ser stop thr T
leu ser stop thr C

G leu pro his arg A
leu pro his arg G
leu pro gln arg T
leu pro gln arg C

T ile thr asn ser A
ile thr asn ser G

met thr lys arg T
met thr lys arg C

C val ala asp gly A
val ala asp gly G
val ala glu gly T
val ala glu gly C

3. Table 6c): The code table after the T-C symmetry breaking

A G T C
A phe ser tyr cys A

phe ser tyr cys G
leu ser stop stop T
leu ser stop trp C

G leu pro his arg A
leu pro his arg G
leu pro gln arg T
leu pro gln arg C

T ile thr asn ser A
ile thr asn ser G
ile thr lys arg T

met thr lys arg C
C val ala asp gly A

val ala asp gly G
val ala glu gly T
val ala glu gly C

At the last stage the T-C symmetry breaking giving rise to bla-trp and ile-met doublets occurs.

1. thr 6-plet is transformed to 4-plet by replacing thr-thr in AC2 by bla-trp. trp is the missing
amino-acid.

2. TA2 met-doublet is transformed to ile-met so that the realistic genetic code results.
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One might argue that symmetry breaking permutations G1−C2 and AG2−TG1 should permute
amino-acids with a similar chemical character. A similar constraint applies to T-C symmetry
breaking. By studying the chemical structure of the amino-acids, one finds that this is satisfied to
a high degree.

1. The permutations val-leu and ala-pro exchange amino-acids with non-polar (hydrophobic)
side groups. The permutations glu-his and gly-arg exchange polar (hydrophilic) amino-acid
with a polar amino-acid which is also basic. Ser and thr are both non-polar amino-acids.

2. Ile and met are both non-polar so that ile→ met replacement satisfies the condition.

3. The objection is that the side group for trp is non-polar but polar for thr. Interestingly,
the code table decomposes to two connected regions corresponding to non-polar/polar side
groups at the left/right such that the non-polar trp located inside the polar region is the
only black sheep whereas thr naturally belongs to the polar region. As will be found trp is
also otherwise singular case.

Figure 1: The chemical structure of amino-acids. The first group (ala,. ..) corresponds to non-
polar amino-acid side groups, the remaining amino-acids to polar side groups. The two lowest
groups correspond to acidic (asp, glu) and basic side groups.
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2.2.4 The information maximization principle determining the ”volume preserving
flow”

The interaction between the DNA singlets and doublets is the physical explanation for the break-
ing of the product symmetry. This interaction involves two parts: the flow and T-C symmetry
breaking. The flow is analogous to the formation of connected vertical stripes of amino-acids in
DNA space: kind of condensation process in which different phases represented by amino-acids
tend to condense to form regions consisting of at most 4-units of type XY U , U = A,G, T, C. Obvi-
ously this means continuity and thus also symmetry analogous to that emerging when (amino-acid)
gases condense to a liquid state: the breaking of the product symmetry is the price paid for this
additional symmetry. It turns out to be possible to formulate a variational principle consistent
with the proposed flow in the direction of the columns of the code table and defining the dynamics
of the condensation.

What this means that one can assign an information measure to the code table such that the
volume preserving flow in question maximizes this information measure.

1. Information measure is assumed to be local in the sense that it decomposes into a sum of
information measures associated with the elements CAB , A,B ∈ {A, G, T,C}, of the 4 × 4
code table (elements are 4-element columns). In the physical analogy this means that the
condensed droplets of various amino-acids can have at most the size of single 4-element
column.

2. Consider the element CAB . Let the multiplet associated with the amino-acid ak contain
n(k,AB) amino-acids and let i(k, AB) tell the number of the disjoint parts to which the
amino-acids ak in the 4-plet AB split. The number of these disjoint multiplets can be 0, 1, 2.
Let the i:th region contain n(k, AB, i) amino-acids ak. The meaning of the equations

∑i(k,AB)
i=1 n(ak, AB, i) = nk(AB) ,

∑
AB nk(AB) = nk ,

∑
k nk = 64

is obvious.

Assign to the i:th connected region containing n(k, i, AB) identical amino-acids ak probability

p(k, i, AB) =
n(k, i, AB)

64
,

to the element AB the total probability

p(k, AB) =
i(k,A,B)∑

i=1

p(k, i, AB) ,

and to the entire table the probability

pk =
∑

AB

p(k,AB) =
n(k, AB)

64
.

The sum of the probabilities associated with various amino-acids satisfies
∑

k

pk = 1 .
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The information measure associated with amino-acid ak element AB is defined as

I(k, AB) =
i(k,A,B)∑

i=1

p(k, i, AB)× log[p(k, i, AB)] ,

Note that this number is non-positive always. The total information associated with the amino-acid
ak in code table is defined as

I(k) =
∑

AB

I(k, AB) .

The total information of the code table is defined as the sum of the information measures associated
with various amino-acids:

I =
∑

k

I(k) .

This information measure is maximized (which means the minimization of the absolute value of
the measure since one can speak of the minimization of entropy) by the vertical flow satisfying the
previous constraints, and thus satisfying the constraints that the numbers ak of various amino-
acids are fixed and A ↔ G and T ↔ C symmetries are respected. There is a direct analogy
with thermodynamical equilibrium with fixed particle numbers and symmetry. The equilibrium is
characterized by the chemical potentials associated with the amino-acids. There is no temperature
type parameter now.

The variational principle indeed favors the formation of vertically connected regions consisting
of n = 2, 3 or 4 amino-acids. By construction the variational principle does not tell anything about
larger regions. In particular, it is more favorable for 4 amino-acids in a given column (say ser
in the second column of the table) to be contained by single element than by 2 elements since
the information measure would be −1/16log(1/16) for two disjoint doublets and −1/16log(1/8)
for singlet 4-plet in same element and thus smaller in absolute value. In the similar manner the
AAAB decomposition of singlet element instead of say AABA is favored.

2.2.5 The deviations from the standard code as tests for the basic symmetries of the
model

The deviations of the genetic codes from the standard code [19] provide a testing ground for the
postulated symmetries of the genetic code and might also help to deduce the alien codes.

The deviations from universality of the start codon (coding for met) and stop codons are
very rare. With two exceptions all known deviations from the standard code are located in the
first and fourth columns of the code table. For the first exceptional case the codon is ATC in
the third column and codes for both stopping sign and pyrrolysine, which is an exotic amino-
acid. It is somewhat a matter of taste whether one should say that the universality of the third
column is broken or not since, depending on context, ATC codes stopping sign or pyrrolysine.
Second exceptional case corresponds to the use of two stop codons to code amino-acids and this
necessarily breaks the universality of the third column in T-C 2-subcolumns. No violations of the
predicted A-G symmetry and the universality of the second column of the code table are known.

The deviations from the standard code [19] provide valuable hints when one tries to deduce
information about the alien codes.

1. Consider first the mitochondrial genes.
i) Mitochondrial codon ACT from animals and micro–organisms (but not from plants) codes
trp instead of stopping sign.
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ii) Most animal mitochondria use TAT to code met instead of ile.
iii) Yeast mitochondria use GAX codons to code for thr instead of leu.

2. The violations of the universality are very rare for nuclear genes. A few unicellular eukaryotes
have been found that use one or two of three stop codons to code amino-acids instead. The
use of two stop codons to code amino-acids necessarily violates the universality of the third
column but need not break the universality for the imbedding of amino-acid space to DNA
space.

3. There are also two non-standard amino-acids: selenocysteine and pyrrolysine.
i) Selenocysteine is encoded by ACT (fourth column) coding stopping sign normally. In-
terestingly, ACT codes also stopping sign and the translation machinery is somehow able
to discriminate when selenocysteine is coded instead of stop. This codon usage has been
found in certain Archaea, eubacteria, and animals. This deviation means that the number
of amino-acids is 21 or 20 depending on context. This conforms with the view that number
21 indeed has a deep number theoretical meaning and that one can regard stopping sign
formally as amino-acid.
ii) In one gene found in a member of the Archaea, exotic amino-acid pyrrolysine is coded
by ATC, which corresponds to the lower stopping sign in the code table. This case repre-
sents the only deviation from universality of the third column of the code table but even in
this case also stopping sign is coded. How the translation machinery knows whether to code
pyrrolysine or to stop translation is not yet known. TGD would suggest that electromagnetic
signaling mechanisms (’topological light rays’) might be involved.

3 Basic ideas and concepts underlying second model of ge-
netic code

In the following the basic ideas and concepts are summarized.

3.1 Genetic code from the maximization of number theoretic informa-
tion?

One of the earlier ideas about genetic code was that genetic code maximizes some kind of informa-
tion measure [N2, N3, L4]. In that context ordinary entropy was used. The discovery of number
theoretic variants of Shannon entropy based on p-adic norm allows however a modified approach.

3.2 Genetic code from a minimization of a number theoretic Shannon
entropy

The idea about entropy minimization determining genetic generalizes to the idea that the map
n → p(n) from integers representing DNA to primes representing aminoacids maximizes some kind
of information measure.

3.2.1 Identification of ensembles

There is a natural candidate for the ensemble. This ensemble is defined by the partitions of n
to sums of integers identified in terms of many-boson states. Each partition of an integer would
correspond to a physical state. For Virasoro representations encountered in conformal field theories
this is indeed the case. One can also consider partitions subject to some additional conditions.
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For instance, one could require that same integer appears at most once or that only odd integers
appear in the partition (these options are in fact equivalent).

These two ensembles correspond to bosonic and fermionic systems and states in question corre-
spond to the bosonic and fermionic states of given conformal weight n in Super Virasoro reprsen-
tation. Supersymmetric alternative would be based on the product of bosonic and fermionic
partitition functions so that entropy would be the sum of the bosonic and fermionic contributions.
In the sequel all these options will be studied and supersymmetric option turns out to be the most
promising one.

In the bosonic case the partition numbers are conveniently calculated by using the recurrence
relation [18]

dB(n, r) = P (n, r) = P (n− 1, r − 1) + P (n− r, r) , P (n, 1) = 1 .

(1)

In the fermionic case the numbers Q(n, k) of partitions of n to a sum of integers such that same
integer does not appear twice characterize simplest models. These numbers are obtained from the
formula [18]

dF (n, r) = Q(n, r) = P (n−
(

r
2

)
, r) . (2)

These formulas allow a highly effective numerical treatment when Boltzmann weights depend on
r only.

3.2.2 Identification of information measures

There is also a good guess for the information measure as the p-adic entropy Sp obtained by
replacing the argument logarithm of a rational valued probability pk appearing in Shannon entropy
with the logarithm of its p-adic norm |pk|p. If the probabilities of partitions are same and given
by 1/dI(n), I = B, F , where dI(n) is the total number of partitions, one would have

SI,p(n) = −
dI(n)∑

1

1
dI(n)

log(| 1
dI(n)

|p) = −log(| 1
dI(n)

|p) , I = B,F . (3)

The simplest model obviously corresponds to a high temperature limit in thermodynamics.
SI,p(n) can be expressed also in a form which is a convenient starting point for finite temperature
thermodynamics with Hamiltonian given by the number r of integers in the partition.

SI,p(n) = −
n∑

r=1

pI(n, r)log(| 1
dI(n)

|p) ,

pI(n, r) =
dI(n, r)
dI(n)

, dI(n) =
n∑

r=1

dI(n, r) , I = B, F . (4)

pI(n, r) is the total probability that partition has r summands.
What makes number theoretical thermodynamics so fascinating is that p-adic entropies can be

negative so that they can become genuine information measures. Indeed, if dI(n) is divisible by
p the p-adic norm of dI(n) can become smaller than one and its contribution to the entropy is
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negative. Hence the maximization of SI,p as a function of p assigning to n a unique prime p(n)
is natural in the case of genetic code. Furthermore, if SI,p(n) zero or positive, n does not carry
information and is an excellent candidate for the stopping sign codon.

It is possible to deduce the correspondence n → p(n) by using simple number theoretical
arguments. If the number dI(n) of partitions is divisible by p, n might be mapped to p since the
logarithm of 1/dI(n) receives a large negative contribution tending to make the number theoretic
entropy negative. It is easy to see that the largest power of prime appearing in dI(n) determines
p(n) in the case that dI(n) is divisible by some primes p ≤ 61. At high temperature limit any
prime p ≤ 61 yields the same value of SI,p(n).

3.3 High temperature limit for bosonic, fermionic, and supersymmetric
thermodynamics

The tables below represent the bosonic and fermionic partition numbers and the prediction of high
temperature limit of number theoretical thermodynamics in the bosonic, fermionic, and supersym-
metric cases.

High temperature limit does not predict a realistic genetic code.

1. The decompositions of d(n) to primes contain all primes < 64 except 37 and 61. 23 is not
allowed by the rule determining the value p(n). In fermionic case d(n) is divisible by 61 for
n = 24 and by 37 for n = 28, 20, 47, 62.

2. For n = 13 and n = 36 for which d(n) is prime larger than 61 so that it is not possible
to assign any unique prime to them (n = 13 seems to deserve its bad reputation!), p-adic
entropy and thus also information vanishes. A possible interpretation is that these two zero
information integers correspond to stopping sign codons. In the general case integers coding
p = 2 are good candidates for stopping codons since minimization of entropy favors p = 2
when the partition function fails to be divisible by any prime p ≤ 61.

3. The primes p smaller than 13, in particular p = 11, which would be coded by as many as 19
DNAs, are strongly over-represented. The over-representation of small integers might reflect
the three congruences p(4+5d) mod 5 = 0, d(5+7r) mod 7 = 0, and d(6+11r) mod 11 =
0 found by Ramanujan for which quite recently a proof and generalization has been found
[16].

4. For both fermionic and supersymmetric partition functions primes 41 and 43 fail to be coded
and there is strong over-abundance of p = 2. An amusing numerical coincidence is that
dF (20) = 64 holds true.
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n dB(n) pB(n) dF (n) pF (n) pBF (n)
0 1 1 1 0 0
1 1 1 1 1 1
2 2 2 1 1 2
3 3 3 2 2 3
4 5 5 2 2 5
5 7 7 3 3 7
6 11 11 4 2 11
7 3 × 5 5 5 5 5
8 2 × 11 11 6 3 11
9 2 × 3 × 5 5 8 2 2
10 2 × 3 × 7 7 10 5 3
11 23 × 7 2 12 2 2
12 7 × 11 11 15 5 11
13 101 (prime) ? 18 3 3
14 33 × 5 3 22 11 3
15 24 × 11 2 27 3 3
16 3 × 7 × 11 11 32 2 2
17 33 × 11 3 38 19 3
18 5 × 7 × 11 11 46 23 23
19 2 × 5 × 72 7 54 3 7
20 3 × 11 × 19 19 64 2 2
21 23 × 32 × 11 11 76 2 2
22 2 × 3 × 167 3 89(prime) ? 3
23 5 × 251 5 104 13 13
24 32 × 52 × 7 5 122 61 61
25 2 × 11 × 89 11 142 11 11
26 22 × 3 × 7 × 29 29 165 29 29
27 2 × 5 × 7 × 43 43 192 2 2
28 2 × 11 × 132 13 222 37 13
29 5 × 11 × 83 11 256 2 2

Table 1. The table represents the partition numbers dB(n) and dF (n) as well as the primes
pB(n),pF (n), pBF (n) resulting from the minimization of the p-adic entropy SI,p(n), I = B, F,BF
as a function of n for n < 30.
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n dB(n) pB(n) dF (n) pF (n) pBF (n)
30 22 × 3 × 467 2 296 2 37
31 2 × 11 × 311 11 340 17 17
32 3 × 112 × 23 11 390 13 11
33 32 × 72 × 23 7 448 2 7
34 2 × 5 × 1231 3 512 2 2
35 3 × 112 × 41 11 585 13 11
36 17977(prime( ? 668 2 2
37 7 × 11 × 281 11 760 19 19
38 5 × 112 × 43 11 864 2 11
39 34 × 5 × 7 × 11 3 982 2 3
40 2 × 3 × 72 × 127 7 1113 53 7
41 3 × 7 × 11 × 193 11 1260 3 7
42 2 × 11 × 2417 11 1426 31 31
43 34 × 11 × 71 3 1610 23 7
44 52 × 31 × 97 31 1816 2 31
45 2 × 41 × 1087 41 2048 2 2
46 2 × 3 × 73 × 241 3 2304 2 2
47 2 × 72 × 19 × 67 7 2590 37 7
48 3 × 7 × 7013 7 2910 5 3
49 52 × 11 × 631 5 3264 2 2
50 2 × 11 × 9283 11 3658 59 59
51 3 × 112 × 661 11 4097 17 11
52 3 × 7 × 11 × 23 × 53 53 4582 29 53
53 32 × 7 × 5237 3 5120 2 2
54 5 × 7 × 11 × 17 × 59 59 5718 3 59
55 22 × 7 × 71 × 227 7 6378 3 2
56 11 × 47 × 1019 47 7108 47 47
57 2 × 3 × 102359 3 7917 29 29
58 22 × 5 × 11 × 3251 11 8808 2 2
59 22 × 5 × 11 × 19 × 199 19 9792 2 2
60 17 × 139 × 409 17 10880 2 17
61 3 × 5 × 7 × 11 × 971 11 12076 2 11
62 22 × 11 × 13 × 2273 13 13394 37 37
63 3 × 113 × 4441 3 14848 2 2
64 2 × 5 × 11 × 71 × 223 11 16444 11 11
65 2 × 1006279 2 18200 5 5

Table 2. The table represents the partition numbers dB(n) and dF (n) as well as the primes
pB(n),pF (n), pBF (n) resulting from the minimization of the p-adic entropy SI,p(n), I = B, F,BF
as a function of n for 30 ≤ n ≤ 65. Note that for bosonic case p = 37 and 61 are not coded whereas
for supersymmetric case p = 41 and 43 are not coded.

n 1 2 3 4 6
N 2 9 2 5 3

Table 3: The numbers N(n) of amino-acids coded by n DNAs.
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4 Could finite temperature number theoretic thermodynam-
ics reproduce the genetic code?

The number theoretical ansatz in its simplest form fails. It is however possible to modify the
measure associated with the partitions, which can be regarded as T →∞ limit of thermodynam-
ics. Some kind of conserved quantity playing the role of Hamiltonian and distinguishing between
different partitions should be introduced.

p-Adic thermodynamics implies that the counterpart of Boltzmann exponent exp(−H/T ) should
be rational. One manner to guarantee this is to assume Boltzmann weight has the form q

−H/Tr

0

for some rational number q0 assuming that H/Tr is integer valued. A stronger condition is that
q0 is integer. With natural conventions both Hamiltonian and the inverse of the reduced tem-
perature Tr are integer valued. For Tr = 1/k the counterpart of the ordinary temperature would
be T = k/log(q0). Thus q0 would partially characterize the number theoretical temperature of
DNA-aminoacid system and varying temperature would allow the possibility of several codes. The
genetic code indeed involves small variations [L4, N3]. The Hamiltonian should depend on the
number r of integers in the partition and possibly n, perhaps also on more refined properties of
the partition.

The finite temperature need not as such be enough to guarantee a reasonable genetic code.
On purely statistical grounds one expects that small primes appear very frequently as divisors
of integer valued reduced partition function and over- abundance of small primes is expected.
Detailed calculations in low temperature phase confirm this prediction.

Physical intuition suggests that there could exists something analogous to a critical temperature
in the sense that large long range fluctuations for ordinary criticality correspond to large degen-
eracies for large primes. The challenge would be to find this critical phase expected to be located
somewhere between high temperature phase and low temperature phases with (r0 > 1, s0 = 1)
and thus characterized by r0 > s0 > 1. The attempts to realize this program have not led to a
success, and it seems that it is not only particular thermodynamical state of the system which
should be critical, but the very Hamiltonian defining the number theoretical thermodynamics as
the quantum criticality of TGD Universe indeed suggests.

4.1 How to choose the Hamiltonian?

4.1.1 Hamiltonian as a function of the number of summands in the partition?

The most symmetric positive definite Hamiltonian one can imagine is H(n, r) = H(r) = r thermo-
dynamically equivalent with H(r) = r − 1. The independence of the Hamiltonian on n conforms
with the idea that the dynamics is local in the sense that only the number r of integers in the
partition matters and that the value n of the individual integer is irrelevant. Dynamics would be
same for all values of n and in this sense universal.

A possible interpretation for H(r) is in terms of the breaking of conformal symmetry allowing
to distinguish between states characterized by the same eigenvalue n of the Virasoro generator L0

and generated by the products
∏

k Lnk
of Virasoro generators. This Hamiltonian is certainly the

most natural starting point because it possesses maximal symmetries and is also computationally
tractable.

For the corresponding thermodynamics temperature corresponds to a rational q = r/s > 1 and
Boltzmann weights are given by the exponents qr. It turns out difficult to find realistic looking
genetic codes for this thermodynamics. Unless q is near unity only lowest values of r contribute
and the general tendency is that the spectral power concentrates at small primes ≤ 11. This can
be understood from the fact that small primes are the most probable divisors of random integers.
The only hope seems to be that there exists a critical temperature at which large long range
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fluctuations correspond to large degeneracies for large primes.
The most general thermodynamics allows arbitrary function exp(H/T ) = f(r, T ) of r having

positive integers as values. An especially natural choice is f(r) = (r + r0)n corresponding to
Hamiltonian H = log(r + r0) and temperature T = 1/n so that one has

exp(−H/T ) = (r + r0)n0 , n0 = ±1,±2, ... , r0 = 0, 1, 2, ... . (5)

so that a second integer valued parameter creeps in. Note that the thermodynamics is invariant
under the scalings (r + r0) → λ× (r + r0).

For n ≥ 0 the formula for Sp(n) is computationally very attractive but n0 > 0 corresponds
to negative temperatures or negative values of H(r). It is of course not clear whether the sign
of temperature is really important since the number of states is finite. The general vision that
rational valued entanglement coefficients correspond to negative entropy and are associated with
bound states would suggest that H has interpretation as the analog of negative of binding energy
and is therefore negative.

For n0 < 0 the numerical calculations are somewhat intricate due to the emergence of factorials
up to 63! in the calculation of p-adic norms of partition coefficients. The factors 1/(r + r0)n0 tend
to divide from the partition function prime factors r0 +1 away and this means that for small values
of r0 the primes pr0 + 1 ≤ 61 rarely divide it. Hence an entropic phase is in question for r0 < 61
and numerical calculations demonstrate that only few p > 2 are coded. One might hope that the
situation changes for r0 > 61 and should resemble that for n0 > 0. Numerical calculations show
that this is not the case. The outcome is a complete spontaneous magnetization in the sense that
only p = 2 is coded. This can be understood from the fact that entropy is minimum for p = 2.
The safe conclusion seems to be that n0 > 0 phase is the only option possibly reproducing the
genetic code for a properly chosen Hamiltonian.

The polynomial rather than exponential thermodynamics would conform with the quantum
criticality and fractality of TGD Universe. The nice feature of the logarithmic Hamiltonian is
that it describes inherently critical system since the thermodynamical weights are slowly varying
functions of r and therefore thermal fluctuations are large. Therefore there are hopes of achieving
criticality, perhaps for all values of n for n0 > 0.

These optimistic expectations turn out to be correct. Numerical calculations for n0 > 0 bosonic
case demonstrate that the concentration of spectrum to small primes is not anymore present, all
primes can be coded in some cases, and qualitatively reasonable looking genetic codes are obtained
with degeneracies smaller than 8. The next improvement is super-symmetry which leads to more
realistic candidates for genetic code with small parameter values. It is quite possible that the
requirement that the realistic genetic code results exactly fixes the Hamiltonian completely and
that some kind of symmetry breaking is required to get the correct code.

4.1.2 Hamiltonian as a function of the rank of the partition?

There are also more complex candidates for the Hamiltonian if one allows Hamiltonian to have
different values for partitions having the same value of r. Already Dyson introduced the notion of
rank of a partition of type (n, r) as the difference

R(n, r, nmax) = nmax − r , (6)

where nmax is the largest integer appearing in the partition [16].
Rank divides the partitions into equal sized classes and the number of them obviously appears

as a factor in d(n). The notion of rank allows to prove the congruences d(4 + 5d) mod 5 = 0 and
d(5 + 7r) mod 7 = 0 discovered by Ramanujan but fails for d(6 + 11r) mod 11 = 0 as found
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by Dyson [17]. Dyson speculated the existence of a more complex invariant which he christened
crank.

Rank is not positive definite as the study of simplest examples demonstrates. A simple manner
to get a non-negative Hamiltonian is based on the so called group number defined as rank modulo
n + 1:

G(n, r, nmax) = R(n, r, nmax) mod n + 1 , (7)

and having values only in the set {0, ..., n}. The modulo arithmetics has the effect of producing
double degeneracy of partitions with same group number. The numbers N(p) coding given prime
satisfy N(p) ≥ 2 for the real genetic code and this might be due to the modular arithmetics (the
exponential thermodynamics based on rank predicts typically N(p) = 1 or 0 for p > 11).

Hence one could consider the Boltzmann weights

exp(−H/T ) = qkH(n,r,nmax) ,

kH(n, r, nmax) = G(n, r, nmax) . (8)

For this option partitions (r, n2...nr) are favored for positive temperatures since R = 0 in this case
and at low temperature limit the finding of genetic code reduces to the identification of the largest
prime power factors of the number of partitions of n of type (r, n2...nr). Note that ground state
degeneracy results whereas for H = r the ground state is singly degenerate at low temperature
limit. The study of small values of n shows that this thermodynamics is not very interesting since
the number of partitions of this kind is rather small. For large primes this would mean that they
cannot be coded.

The inherently critical option corresponds to

exp(−H/T ) = (G(n, r, nmax) + g0)k ,

(9)

with integer valued temperature k. For g0 = 0 the partitions of type (r, n2...nr) would have zero
thermodynamical weights for k > 0 and infinite conformal weight for k < 0.

4.1.3 Hamiltonian as the function of the crank of the partition?

Quite recently Mahlburg [16] represented an ingenious proof of a theorem generalizing the famous
regularities of partitions discovered by Ramanujan and followers (for a popular representation of
what is involved see the article [17]). The proof is based on the identification of the invariant
anticipated by Dyson.

The reason why a function of crank is a promising candidate for Hamiltonian is following.
A partial explanation for why primes p ≤ 11 are so abundant at infinite temperature limit is

that d(n) is divisible by 5, 7, 11 for n = 4 + 5k, n = 5 + 7k, and n = 6 + k11 respectively so that
these primes are strong competitors in negentropy maximization race for a large number of values
of n (19 for p = 5, 8 for p = 7, 5 for p = 11).

Crank, denote it by C, decomposes the partitions to subsets for which numbers of elements are
divisible by 5, 7 resp. 11 in these three cases. The expression for Sp(n) in the case of polynomial
thermodynamics can be written as
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Sp(n) =
∑

i

N(n, i)Ck(i)log(|C
k(i)

Z(n)
|p) ,

Z(n) =
∑

i

N(n, i)Ck(i) ,

(10)

It is clear that 5,7, 11 appearing as divisors in both N(n, i) and Z(n) cancel each other and there
is no large contribution to negentropy from these primes. This contribution is actually tamed also
for other Hamiltonians defining polynomial dynamics.

4.2 Could supersymmetric n0 > 0 polynomial thermodynamics deter-
mine the genetic code?

The numerical experimentation excludes exponential thermodynamics whereas exponential ther-
modynamics produces qualitatively reasonable looking genetic codes for n0 > 0 whereas for
n0 < 0 most of the spectral power is concentrated at p = 2. For small values of n0 and
r0 purely bosonic thermodynamics fails to reproduce codes satisfying the necessary conditions
D(p) > 0 and D(p) < 7 satisfied by the real genetic code. Super symmetric variant with
Sp(n) = SB,p(n) + SF,p(n) however yields several codes satisfying this condition when Hamil-
tonian is taken to be exp(H/T ) = (r + r0)n0 , r the number of summands in the partition.

4.2.1 Basic conditions

The basic conditions on the degeneracies are following:

1. 3 values of n should correspond to stopping codons due to their non-positive or negative
entropy. Non-positive entropy is certainly the logical option since the notion of zero infor-
mation codon does not seem to be reasonable. Numerical computations demonstrate that
negative entropies are rather rare whereas Sp(n) = 0 occurs rather often. The reason is
that if partition function is not divisible by any p ≤ 61 then the smallest prime p ≤ 61
not dividing any of the numerators of Boltzmann weights minimizes information and gives
Sp(n) = 0. These observations suggest that Sp(n) ≤ 0 condition should be used as a criterion
for stopping codon property.

2. The degeneracies D(p) satisfy D(p) > 1 if one has (0, 1) → (0, 1) so that 0 and 1 correspond
to the two aminoacids coded by single DNA.

3. Complete hit means that the numbers N(k) of DNAs coding D = k ∈ {2, 3, 4, 5, 6} real
aminoacids (as distinguished from stopping sign) should be (9, 1, 5, 0, 3). This condition
combined with the condition N(stop) = 3 allows an automatic search of candidates for
codes.

4.2.2 Results

For polynomial thermodynamics the range n0 ∈ {1, 5}, r0 ∈ {0, 5} is scanned. For exponential
thermodynamics the range studied is r0 ∈ {1, 5}, s0 ∈ {1, 5}. B,F, and BF variants are studied
applying the two alternative criteria for the stopping codon and requiring that exactly 3 stopping
codons result.

1. S ≤ 0 as a criterion for the stopping codon
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a) Polynomial thermodynamics.
i) Numerical experimentation shows that the number of stopping codons increases rapidly with

the values of (n0, r0) for polynomial thermodynamics so that only small parameter values seem to
be worth of considering.

ii) For cases B and F no solutions are found. BF allows single solution. This code corresponds
to (n0, r0) = (2, 4) having degeneracies

(D(2), D(3), ...., D(61)) = (4, 4, 9, 3, 7, 6, 2, 2, 1, 1, 4, 1, 3, 1, 2, 2, 3, 4) .

The numbers of DNAs associated with the degeneracies (1,2,3,4,5,6) are

(N(1), N(2), N(3), N(4), N(5), N(6)) = (6, 4, 3, 3, 0, 1)

to be compared with the degeneracies

(2, 9, 1, 5, 0, 3)

of the real code. If 3 DNAs from 9-plet (p = 5) and 1 DNA from 7-plet (p = 11) are shifted to 4
1-plets, and 1 DNA from 3-plet is shifted to 3-plet, correct degeneracies result. A modification of
r0 by adding the product of primes p ≤ 61 with p /∈ {5, 11} would affect the degeneracies associated
with 5 and 11.

b) Exponential thermodynamics.
There are no solutions for F and BF. B gives solution (r0, s0) = (5, 3) with degeneracies

(9, 1, 3, 1, 5, 2, 3, 2, 4, 4, 4, 2, 3, 2, 2, 3, 1, 8) .

From this solution it is possible to construct the real genetic code by shifting 3 codons from 9-plet
to 3 1-plets, one codon from 3-plet to a second 3-plet, and 2 codons from 8-plet to 5-plet and
3-plet.

2. S < 0 as a criterion for the stopping codon

1. Polynomial thermodynamics.
For F and BF no solutions are found. B gives single solution (n0, r0) = (3, 1). The degenera-
cies are (3, 2, 11, 6, 3, 1, 5, 1, 5, 6, 4, 1, 2, 1, 1, 2, 2, 3) and quite far from those of the real genetic
code.

2. Exponential thermodynamics.
No solutions are found.

The conclusion is that BF for Sp < 0 criterion for stopping codon is the most realistic one and
might produce by a small deformation the real genetic code.

4.3 Could small perturbations of Hamiltonian cure the situation?

The troubling outcome of calculations is that no realistic code is found for the simplest Hamiltonian.
The obvious guess is that one should study small perturbations of the Hamiltonian. There are
two kinds of small perturbations. The perturbations of the first kind are small in the real sense
but can induce dramatic changes of the genetic code by affecting the p-adic norms of Z(n). The
perturbations of the second kind are small in the number theoretical sense but as a rule affect
strongly the values of the real probabilities.
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4.3.1 Small perturbations in the real sense

The perturbations which are small in the real sense would simply modify f(r) by few units. They
would however dramatically affect the p-adic norms of Z(n) and induce thorough changes in the
genetic code. In order to proceed in a rational manner some additional assumptions are necessary
and therefore this approach will be left in the next subsection where the maximization of the
total negentropy of the genetic code is introduced as a variational principle allowing to fix the
Hamiltonian as a small perturbation reducing the values of f(r) = r of the Boltzmann weight. It
seems that this approach is the more promising one.

4.3.2 Number theoretically small perturbations

The small values of n0 and r0 plus unsuccessful searches for n0 > 5 encourage to ask whether the
real code result from the semi-realistic codes via a small perturbation of Hamiltonian changing
only the partition function Z in number theoretical sense.

The simplest situation is achieved if perturbations do not distinguish between partitions with
the same value of r. The number theoretical generalization for the notion of symmetry of action
principle suggests that perturbations should leave invariant the prime power factors pk of Z for
p ≤ 61 but affect them for p > 61. This would affect only the probabilities of individual partitions
and the positive contributions to Sp(n) coming from the numerators of Boltzmann weights. This
might be enough to affect the situation in the case that two primes p1 and p2 have nearly the same
value of Sp(n) in the original situation. What would be needed that three singly (and thus rarely)
coded primes would become doubly coded by this kind of fine tuning.

More precisely, the Boltzmann weight associated with r transforms in H(r) → H(r) + ∆H(r)
as B(r) = exp(−H(r)/T ) → B(r)× (1 + ∆H(r)/T ). From this it is clear that the p-adic norm of
the contribution of r to the partition function is unaffected if H(r) is divisible by a sufficiently high
powers of all primes 2 ≤ p ≤ 61: this by the way defines what the notion of small perturbation
means number theoretically. Obviously this kind of symmetries exist and since large powers of p in
∆H(r) modify dramatically the probabilities p(n, r), it is indeed possible to affect the degeneracies
associated with various aminoacids.

The simplest perturbation corresponds to the addition of a sufficiently high power of the product
P =

∏
p≤61 p to r0 : r0 → r0 +P k. The p-adic norms appearing as arguments of logarithms would

remain invariant. Boltzmann weights would be identical in an excellent approximation as for
infinite temperature limit so that the probabilities p(n, r) would reduce to p(n, r) ' d(n, r)/d(n).
The model would result via the replacement of p(n, r) → d(n, r)/d(n) from the original model.

It turns out that this replacement does not solve the problem in the range (n0 ∈ {1, 5}, r0 ∈
{0, 5}: no codes with 3 stopping sign codons are found. One cannot of course exclude the possibility
that larger values of n0 and r0 might provide a solution.

A more general trial would assume that the perturbation modifies the p-adic norms of Boltz-
mann weights but leaves the norms of partition function invariant.

4.3.3 Should one break the symmetry between partitions with same r?

A more radical modification results if the perturbation distinguishes between partitions with dif-
ferent values of r. It is however not clear whether integer valued perturbation can be small in
number theoretic sense. Rank and crank distinguish between partitions with same r.

The most radical option is to replace r with a new invariant. If rank and crank define the entire
Hamiltonian, they divide partitions into equivalence classes by combining partitions with different
values of r to single equivalence class so that the situation changes dramatically. The knowledge
about the numbers of partitions in corresponding equivalence classes plus values of these invariants
would make it easy to check whether either of them could reproduce the real genetic code.
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4.4 Could one fix Hamiltonian H(r) from negentropy maximization?

Numerical calculations suggests that number theoretically small modifications might not be the
correct manner to find a correct genetic code: the codes having the correct number of stopping
codons and coding for all primes differ simply too much from the real code. Even if such a code
could be found one can argue that it is only a skillful exercise in the modular arithmetics. Numerical
difficulties are also obvious since powers of the product P = 2× 3....× 61 must be added to f(r).

For the perturbations of f(r) = r which are small in the real sense numerical control is not
lost but with physicist’s intuition in the number theory the modifications of the genetic code are
completely unpredictable. The reduction of f(r) by a single unit for single sufficiently small value
of r could change the whole biology! In order to study them one should have additional principle
allowing to get grasp of the problem.

The great principles of physics are variational principles and Negentropy Maximization Prin-
ciple is the basic principle in TGD inspired theory of consciousness [H2]. Quantum criticality
predicts a Universe able to engineer itself and this suggests that the Hamiltonian H(r) determin-
ing the genetic code could be a result of ”genetic engineering” maximizing the total negentropy of
the genetic code.

4.4.1 Could one engineer H(r) from the real genetic code in the case of polynomial
thermodynamics?

The most general hypothesis would be that the 62 values of f(r) = exp(−H(r)/T ) are completely
free positive integers and look whether it is possible to find a Hamiltonian reproducing the genetic
code. The naive idea is that since the number of integers f(r) is the same as the values of n, a
judicious choice of f(r) could allow to assign to a given n arbitrary p(n) or make it a stopping sign
codon. If each r is shifted by the same sufficiently large power of P =

∏
p≤61 p, the probabilities for

partitions are in an excellent approximation identical in the case of polynomial thermodynamics
so that the situation would reduce to a mere modular arithmetics.

One could start from n = 2 and proceed by increasing n and determining the value of f(r = n)
at n:th step from the requirement that the desired value of p results. What seems obvious is that the
value of the partition function Z(n) =

∑n
r=1 d(n, r)f(r) can be fixed to have an arbitrary prescribed

value and thus also the kp(Z(n)) giving the negative contribution to the entropy can be fixed to
a desired value. This leaves still some freedom to arrange the value of kp(d(n, n)f(n)) = kp(f(n))
making possible fine tuning in the n:th numerator contributing to the entropy. The entropies
Sp(n + 1) and Sp(n) would be related by the condition

Sp(n + 1)− Sp(n)
log(p)

= −kp(Z(n + 1)) + kp(Z(n))

+
n∑

r=1

[d(n + 1, r)− d(n, r)] kp(f(r)) + kp(f(n + 1)) .

(11)

The modular arithmetics is of course different from real analysis and the situation might not be
so simple as it looks. On the other hand, if this picture is correct, one might interpret the freedom
to construct the genetic code almost at will as the fruit of quantum criticality making possible
genetic engineering.
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4.4.2 Maximization of the total negentropy of the genetic code as a manner to fix
the Hamiltonian

The basic objection to this approach is that it is not predictable. It is however possible to introduce
a natural variational principle. The maximization of the total negentropy Ntot = −∑

n Sp(n)(n)
of the genetic code subject to the constraint that all primes are coded and there are 3 stopping
codons would in principle allow to fix the function f(r) uniquely.

The maximization of the total negentropy allows to conclude that large (small) prime powers
correspond to large (small) DNA multiplets. For instance, if only first powers of p appear, 9
doublets would correspond to p = 2, ..., 23, triplet to p = 29, five 4-plets to p = 31, ...., 47, and
3 6-plets to p = 53, 59, 61. Furthermore, since the value of Z(n) increases with n, and thus also
the probability that it has large prime power factors, one expects that large values of n should
correspond to large values of p. Hence the the orderings of multiplet sizes, primes powers pk

appearing as factors of Z(n), and integers n should correlate strongly.
Is there then any bound on the exponents of powers pk appearing in Z(n) =

∑
r d(n, r)f(r)?

If not, then the variational principle does not work. For instance, one might think that ones has

f(n + 1) =
n∑

r=1

d(n + 1, r) + mpk ,

where k is an arbitrarily large power of p so that Z(n+1) = mpk holds true and gives an unbounded
contribution to kp(Z(n + 1)). Only p(n + 1, n + 1) would differ significantly from zero and would
be near 1 but this does not give any restriction. It would seem that there must exist some natural
bound on the values of f(r) to stabilize the variational principle.

The most natural option is modulo n+1 arithmetics based on the assumption that Boltzmann
factors depend on both n and r and one has f(n, r) ≤ n at level n. Boltzmann factors would
formally restrict the partition of any integer m > n to partitions of n. This would make the problem
numerically more tractable. With this assumption the model for f(r) = r would correspond to
the maximum value of Z(n). There would be 61! ∼ 5 × 10(83) alternatives to be scanned but
reasonable assumptions should reduce considerably this number.

One can imagine two kinds of additional assumptions.

1. If the genetic code has resulted as a product of singlet and doublet codes then one could
argue that also n = 4 and n = 16 should maximize their total negentropy and code for all
primes p < n as real or stopping codons.

2. A much stronger additional assumption that a genetic code coding all primes p ≤ n results
for every value of n does not work since it implies that highest primes are coded only once.

Consider the situation for the smallest values of n in the bosonic case. For n = 2 f(r) = r
implies Z(2) = 3 giving p(2) = 3 favored by local negentropy maximization and S(2) = −log(3).
f(2) = 1 would give p(2) = 2 and S(2) = −log(2). For n = 3 to f(r) = r would give Z(3) = 6 giving
p(2) = p(3) = 3 and S(3) = −log(3) + log(2)/3 and Stot = −2log(3) + log(2)/3. This corresponds
to the maximum of total negentropy for 4-code. The code is consistent with the proposal that 2n
and 2n + 1 code for the same aminoacid for n < 61 explaining the fact that almost all aminoacids
are coded by an even number of codons. The absence of stop codon does not allow this code as
a genuine singlet code. For (f(1), f(2), f(3)) = (1, 2, 2) with (Z(2), Z(3)) = (3, 5) one would have
n(2) = 3 and n = 3 would represent stopping codon.

For larger values of n a convenient starting point would be f(n) = n and direct checking of
values f(n) = n − k for not too large values of k to find a value of Z corresponding to a large
prime power. This would give a precise content to what a small perturbation of the Hamiltonian
H(r) = log(r) in real sense means in practice. Perturbation would be small only in sense of real
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analysis and number theoretic effects would be rather dramatic for perturbations at small values
of r. Also the notion of a small perturbation of a given genetic code makes also sense. If f(r) is
changed only for the values of r near to r = 63, only the degeneracies of the aminoacids coded by
largest integers and thus having largest degeneracies are affected.

4.4.3 Bosonic Hamiltonian maximizing negentropy subject to constraints coming
from the real genetic code

The direct computational search of genetic codes maximizing the total negentropy without any
assumptions about genetic code besides non-degeneracy requires a considerable computational
power. It is much easier to search for n → p(n) assignments maximizing the negentropy subject
to the constraint that the assignment is consistent with the genetic code.

The reason is that one can imagine a very simple method giving hopes of finding an assignment
n → f(n), 1 ≤ f(n) ≤ n consistent with the genetic code. The basic observation is the variation
of f(n) in the allowed range allows always to achieve the condition Z(n) mod p = 0 for p ≤ n.
This gives reasonable hopes that the nearest prime p ≤ n maximizes Z(n). Of course, it can
happen that some prime p > n divides Z(n) or some large power of small prime divides Z(n).
The optimistic guess for the assignment is simple to construct by starting from n = 63 and by
proceeding downwards in this manner. One might argue that the ansatz is too conservative.
With some good luck it might be possible to assign 6-plets to quite many large primes since the
probability P (n, p) to find a value of f(n) guaranteing Z(n) mod p = 0 for p slightly larger than
n is P (n, p) = n/p and near to one. The assignment of 2-plets and stopping to small primes also
helps to maximize the total negentropy.

Computational testing of various ansätze based on guesses for stopping codons required to
correspond to as small integers as possible is rather straightforward when one starts from a simple
guess deduced by the strategy above and described in table 4 below. The strategy is following.

1. It is easy to deduce the map n → p(n) for n ≤ 13. For larger values of n prime divisors
larger than that implied by the ansatz produce trouble so that the natural strategy is to look
whether stopping codons could correspond to integers above n = 14 and near to it.

2. The larger the values n of integers corresponding to stopping codons are, the larger the
numbers of values f(n(stop)) satisfying the criterion for the stopping codon are. The criterion
is the indivisibility of Z(n(stop)) by any p ≤ 61 so that prime values of Z(n(stop)) certainly
satisfy the constraint for n(stop) > 7. This increases the hopes that the constraints from the
real code can be satisfied. The smallest values of n(stop) for which the constraints can be
satisfied for all values of n are n(stop) ∈ {14, 15, 17}. The computation proceeds simply by
checking whether any combination of candidates for these three stopping codons satisfies is
consistent with the genetic code.

In the sequel considerations are restricted to the bosonic partition function but the generaliza-
tion to the supersymmetric case is straightforward. The table below represents the ansatz which
served as a starting point for the calculations.
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n in range is coded to multiplet
63-61 61 3
60-59 59 21

58-53 53 61

52-47 47 62

46-43 43 41

42-41 41 22

40-37 37 42

36-31 31 63

30-29 29 23

28-25 23 43

24-21 19 44

{20− 18, 16} 17 45

17 stop
15-14 stop
13-12 12 24

11-10 11 25

9-8 7 26

7-6 2 27

5-4 5 28

3-2 3 29

Table 4. The n → p(n) correspondence whose deformation produces an n → f(n) correspon-
dence consistent with the real genetic code.

Maps n → p(n) consistent with the real code can be found by a numerical experimentation
starting from the simple guess summarized by Table 4 above and changing the assignments in a
obvious manner in the case that some relatively small n yields a large prime factor. In this manner
for instance p = 61 multiplet can be completed to a 6-plet. The table below represents such a
map. From the table it is clear that p(n) = p(n + 1) symmetry is only slightly broken and can
be understood as a direct consequence of the mechanism assigning to given n the desired prime
p ∼ n.
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n in set is coded to p multiplet
{63− 60, 52, 27} 61 61

{59, 57} 59 21

{58, 56− 53, 51} 53 62

{50, 49, 31} 47 3
{48− 44, 33} 43 63

{43, 28, 26, 24} 23 41

42-41 41 22

40-37 37 42

36-32 31 43

30-29 29 23

25-21 19 44

{20, 19, 18, 16} 17 45

{17, 15, 14} stop3

13-12 13 24

11-10 11 25

9-8 7 26

7-6 2 27

5-4 5 28

3-2 3 29

Table 5. The n → p(n) correspondence maximizing the total negentropy with a constraint for
multiplicities coming from the real genetic code.

The Boltzmann weights for the n → p(n) correspondence represented in the table are given in
the array below.

n 1 2 3 4 5 6 7 8 9 10 11 12
f(n) 1 2 3 2 2 2 1 4 6 5 1 12
n 13 14 15 16 17 18 19 20 21 22 23 24
f(n) 7 12 12 3 16 4 13 19 9 18 21 18
n 25 26 27 28 29 30 31 32 33 34 35 36
f(n) 22 11 6 1 6 23 19 17 15 22 34 5
n 37 38 39 40 41 42 43 44 45 46 47 48
f(n) 11 32 32 25 41 28 10 37 35 25 11 39
n 49 50 51 52 53 54 55 56 57 58 59 60
f(n) 1 11 24 22 2 5 47 39 9 25 1 48
n 61 62 63
f(n) 21 15 20

4.5 Could the symmetries of the genetic code constrain number theo-
retical thermodynamics?

The number theoretic approach alone leaves completely open the correspondence between DNA
triplets and integers n and only the comparison of a code predicting correctly the degeneracies of
various aminoacids with the real genetic code allows to deduce information about this correspon-
dence. For instance, 0,1 DNAs and aminoacids can be identified immediately.

The model for prebiotic evolution [L2, L4] relies on the fact that the genetic code has an almost
exact symmetry: the third nucleotide of the codon has symmetry under A-G exchange and slightly
broken symmetry under T-C exchange and an interesting possibility is that this symmetry could be
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understood at the number theoretical level. Certainly it cannot be a property of the map mapping
DNA triplets to integers alone.

4.5.1 What exact A-G symmetry and almost exact T-C symmetry could mean num-
ber theoretically?

The most natural interpretation for A-G and T-C symmetries of last nucleotide of codon is that
the third 4-digit of the DNA triplet interpreted as a number in the set {0, 63} represented in 4-base
do not matter much. The symmetry for T-C is slightly broken and this gives 64-20 code instead
of 64 → N ≤ 16 code. Real mathematics would suggest that these 4-digit corresponds to zeroth
power of 4 whereas 2-adic arithmetics suggests that it corresponds to the second power of 4.

The characteristic feature of the genetic code is that the degeneracies come in pairs which can
be understood in terms of A-G symmetry. There are 3 6-plets, 5 4-plets, 9 2-plets and 1 3-plet
of aminoacids and one 3-plet of stopping codons besides the 2 singlets assignable to 0 and 1.
That almost all multiplets contain even number of DNAs reflects the additional approximate T-C
symmetry.

Even degeneracies must correspond to an approximate symmetry of the partition function. This
kind of symmetry could be produced by hand by expressing the partition function as a product
of partition functions Z(n) and Z(f(n)), where n → f(n) represents the symmetry but numerical
experimentation shows that this does not work. The reason is that for a given n the primes
associated with n and f(n) compete and product partition function selects winners from these
pairs reducing the degeneracies of the losers so that spectral power tends to get peaked. Hence
the product model works only if the symmetry is already there in the sense that the largest prime
power factor for Z(n) and Z(f(n)) correspond to same prime p.

Suppose that 3 codons correspond to stopping codons. Suppose that there exist a symmetry
n → f(n), not necessary reflection, acting on remaining codons with the property that the largest
prime power dividing Z(n) and Z(f(n) corresponds to the same p. Since the number of these
codons is odd, the map n → f(n) must have a fixed point. Obviously the degeneracies are even
for primes coded by non-fixed points and odd for those coded by fixed points and the structure of
genetic code is consistent with this prediction.

Quite generally, for the reduction of the code to a maximal subset of integers 2 ≤ n ≤ 63 not
containing f(n) for any n, one would have 11 singlets, 5 2-plets, and 3 3-plets in the set of even
integers, or briefly

29 = 10× 1⊕ 5× 2⊕ 3× 3 .

The fixed point n = f(n) would cocde the aminoacid (ile) coded by 3 DNAs.
A reasonable candidate for the symmetry is suggested by the preceding construction reproduc-

ing the degeneracies of the genetic code correctly and predicting that n and n+1 tend to code the
same aminoacid.

A further input is the information provided by the deviations from the universality of the genetic
coded to be discussed later. The deviations from the universality typically involve stopping codons
and in the proposed construction it is easy to perform small modifications of the code for values
of n near 63. Hence it is natural to test the stronger assumption 2n and 2n + 1 code for the same
p for 2 ≤ n < 60 and that n = 61, 62, 63 act as stopping codons so that n = 60 would correspond
to the fixed point coding for ile.

An objection against this hypothesis is that a lot of negentropy is lost if large integers are forced
to act as stopping codons. Also the successful construction of the genetic code table starting from
the A-G and T-C symmetries of the code table leads to the assignment of the stopping codons to
relatively small integers. In this construction the assignment of stopping codons to large values of
n codons would also make more difficult to assign large multiplets to large primes.

31



A G T C
A phe ser tyr cys A

phe ser tyr cys G
leu ser stop stop T
leu ser stop trp C

G leu pro his arg A
leu pro his arg G
leu pro gln arg T
leu pro gln arg C

T ile thr asn ser A
ile thr asn ser G
ile thr lys arg T

met thr lys arg C
C val ala asp gly A

val ala asp gly G
val ala glu gly T
val ala glu gly C

Table 6. Genetic code.

4.5.2 How close is the correlation between the map from DNA triplets to integers
and the map n → p(n)?

The number theoretical model alone does not fix the map between DNA triplets and integers
although it poses constraints on this correspondence. A-G symmetry and almost T-C symmetry
of the code table however suggest a labelling of the codons which in good approximation could
determine codon → n map.

1. A-G and T-C symmetries suggests that the numbering of genetic codons using 4-base repre-
sentations, that is as sequences of integer triplets (n1, n2, n3), 0 ≤ ni ≤ 3 in 4-base such that
each integer labels the four bases. The correspondence can be different for the different mem-
bers of the triplet. The natural correspondence would be such that (n1, n2, n3) interpreted
as 4-digit representation of n gives the map in a reasonable approximation.

2. The correspondence (T, C,A, G) ↔ (0, 1, 2, 3) for the third nucleotide turns out to be most
realistic one from the point of view of n → p(n) correspondence. A-G and T-C symmetries
suggests that n3 is mapped almost as such to the third 4-digit of n apart from symmetry
breaking due to the complications caused by the insertion of 0 and 1 to the code table.

3. The previous example for the genetic code suggests that n = 14, 15 correspond to stopping
codons. Negentropy Maximization Principle favors doublets for small integers. Since the
third column of the code table contains only doublets, it should correspond to small integers.
These constraints are satisfied under two conditions. First, n1 labels the rows of the table
with the correspondence (T, C, A,G) ↔ (0, 1, 2, 3) along the rows of the table so that first
and second and third and fourth columns are permuted. Secondly, n2 must label the entries
formed by 4-sub columns of the table and one must have (C, T,G, A) ↔ (0, 1, 2, 3) for so that
n2 increases from bottom to top.

4. The two stopping codons ATT and ATC would would correspond to n = 14, 15 as in the
example discussed above. Stopping codon ACT would correspond to n = 30 (n = 17 in the
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example). Encouragingly, ser corresponds to {63, 62, 61, 60, 22, 23)} coding very naturally
p = 61. Also in the example discussed 61 belongs to 6-plet.

5. The correspondence between codons (n1, n2, n3) and integers n cannot be given exactly by
the representation of n in 4-base since 0 and 1 do not correspond to ACC coding trp (0
or 1) but would correspond to (1, 3, 3) = 31. TAC coding met (1 or 0) would correspond
to (2, 1, 3) = 39. The map from codons to integers with minimal symmetry breaking is
obtained from the 4-digit coding of n by shifting 0 and 1 to the positions of 31 and 39.
For n(codon) < 29 this induces the map n = n(codon) + 2. For 41 > n(codon) > 29 the
map is n = n(codon) + 1, and for n(codon) > 41 the map is n = n(codon). Table 7. lists
the resulting number theoretic code in the bosonic case and its correspondence with DNA
triplets and aminoacids for this option. It is clear that the risky assignments n → p(n) are
associated with ser and pro.

A G T C
A phe (46,43) ser(62,61) tyr(16,17) cys(31,29) A

phe(47,43) ser(63,61) tyr (17,17) cys(32,29) G
leu (44,41) ser (61,61) stop (14) stop(30) T
leu (45,41) ser(62,61) stop(15) trp(0/1) C

G leu(42,41) pro(58,59) his(12,13) arg(28,23) A
leu (43,41) pro(59,59) his(13,13) arg(29,23) G
leu(40,41) pro(56,59) gln(10,11) arg(26,23) T
leu (41,41) pro(57,59) gln(11,11) arg(27,23) C

T ile (38,37) thr(54,53) asn(8,7)) ser(24,61) A
ile(39,37) thr(55,53) asn (9,7) ser(25,61) G
ile (37,37) thr(52,53) lys (6,2) arg(22,23) T
met (1/0) thr(53,53) lys (7,2) arg(23,23) C

C val(35,31) ala(50,47) asp(4,5) gly(20,19) A
val(36,31) ala(51,47) asp(5,5) gly(21,19) G
val(33,31) ala(48,47) glu(2,3) gly(18,19) T
val (34,31) ala(49,47) glu(3,3) gly(19,19) C

Table 7. Genetic code with the proposed correspondences between DNA triplets with integers
n and aminoacids with primes p(n). For instance, ala(50, 47) tells that CGA is mapped to n = 50
and ala corresponds to the prime p = 47.

1. Numerical testing in the bosonic case

It is straightforward to test the proposed n(codon) → n map by numerical computations. They
are done for both bosonic and supersymmetric case. In the bosonic case correspondence cannot
be realized as such. n = 29 corresponding to 6th arg is the source of problems and by a trial and
error one ends up with a slightly modified p → n(p) correspondence allowing two solutions for
Boltzmann weights f(n) represented in Table 8 below. The requirement that the small deviations
from the standard code are realizable as small deviations of f(n) without affective genetic code
leaves only f1(n) into consideration (as will be found in the next section).
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n 1 2 3 4 5 6 7 8 9 10 11 12 13
model 0 3 3 5 5 2 2 7 7 11 11 13 13
real 0 3 3 5 5 2 2 7 7 11 11 13 13
f1(n) 1 2 3 2 2 2 1 4 6 5 1 12 7
f2(n) 1 2 3 2 2 2 1 4 6 5 1 12 7
n 14 15 16 17 18 19 20 21 22 23 24 25 26
model 0 0 17 17 19 19 19 19 23 23 61 61 23
real 0 0 17 17 19 19 19 19 23 23 61 61 23
f1(n) 4 8 6 10 12 12 3 5 12 11 15 17 7
f2(n) 4 12 2 6 12 12 7 5 16 11 15 17 7
n 27 28 29 30 31 32 33 34 35 36 37 38 39
model 23 23 0 29 29 23 31 31 31 31 37 37 43
real 23 23 0 29 29 23 31 31 31 31 37 37 37
f1(n) 7 6 21 28 20 27 33 33 21 21 15 36 30
f2(n) 3 6 21 24 24 31 33 33 17 17 15 32 26
n 40 41 42 43 44 45 46 47 48 49 50 51 52
model 37 41 41 41 41 41 41 43 47 47 47 47 53
real 41 41 41 41 41 41 43 43 47 47 47 47 53
f1(n) 13 6 18 23 12 27 28 44 24 33 14 23 52
f2(n) 9 10 18 23 12 31 32 5 20 29 6 23 10
n 53 54 55 56 57 58 59 60 61 62 63
model 53 53 53 59 61 59 59 59 61 61 61
real 53 53 53 61 59 59 59 59 61 61 61
f1(n) 29 26 25 56 10 49 9 10 4 27 49
f2(n) 5 48 45 41 14 56 15 27 8 35 22

Table 8. n → p(n) correspondence allowing two different Boltzmann weights f1(n) and f2(n)
consistent with the real genetic code obtained by a small modification of the correspondence
n → p(n) implied by the map n(codon) → n discussed above. This correspondence is also shown
in the table for comparison purposes.

2. Numerical testing in the supersymmetric case

One might hope that the replacement of the bosonic partition function with the super-symmetric
one might allow an exact realization of the simplest n(codon) → n correspondence. The multi-
plication of ZB by ZF does not destroy any divisors already present so that the effect might be
small. It however turns out that the proposed ansatz fails already at n = 10 since ZF equals to
prime p = 23 giving higher negentropy than p = 11-factor of ZB . One can try to continue by
a modification of the ansatz but the troubles continue and are basically due to the large prime
power factor of ZF . Hence it seems that bosonic ansatz is the only realistic one. Fermionic ansatz
is certainly non-realistic since the number of non-vanishing elements of dF (n, r) is as small as 10
even for n = 63.

5 Confrontation of the model with experimental facts

The proposed model of genetic code means that we would rather literally consist of sequences
of numbers with DNA representing sequences in base 64 and aminoacid sequences represented as
products of primes 2 ≤ p ≤ 61 and separated by zeros. What this predicts depends on how literally
we take this interpretation.
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5.1 Basic facts about aminoacids

Amino-acids can be classified into three groups.
i) The first class contains 8 hydrophobic non-polar amino-acids with non-polar neutral side-chain.
They are leu (6), ala (4), val (4), pro (4), ile (3), phe (2), met (1), trp (1) (numbers in parenthesis
tell the number of DNAs coding the aminoacid in question).
ii) Second class consists of 7 hydrophilic polar amino-acids with polar neutral side-chain: ser (6),
gly (4), thr (4), cys (2), asp (2), gln (2), tyr(2).
iii) The third class consists of polar hydrophilic acidic amino-acids with charged side chain: asp
(2), glu (2) and hydrophilic basic amino-acids arg (6), lys (2), his (2): 5 altogether.

As already noticed, met and trp representing 0 and 1 should belong to the group of non-polar
neutral aminoacids and indeed do so. Also the aminoacid representing a fixed point of symmetry
n → f(n) (ile) (if such a symmetry indeed exists) would belong to this group. It is worth of
noticing that each group contains single aminoacid coded by 6 DNAs.

5.2 Could the biological characteristics of an aminoacid sequence be
independent on the order of aminoacids?

The representation of an integer as a product of primes does not depend on the order of factors.
Unless the aminoacid sequence does not inherit the natural order of DNA triplets somehow, the
biological properties of portions of aminoacid sequences separated by zeros would be invariant
under the permutations of aminoacids: the permutation of aminoacids would be analogous to a
permutation of bosons. The prediction is extremely strong and certainly testable and might have
been observed long ago if indeed true. Professional biologist could probably immediately kill this
option.

5.3 Are the aminoacids and DNAs representing 0 and 1 somehow dif-
ferent?

The aminoacid representing 0 would most naturally separate different structural and/or functional
units and both 0 and 1 could represent a biologically inert aminoacid. Also other interpretation
might of course be imagined. The aminoacids representing 0 and 1 would be met coded by TAC
and trp coded by ACC, not necessarily in this order.

Do met and trp then have some special properties distinguishing them as 1 and 0?

1. Consider first chemical structure. Both are neutral and non-polar aminoacids, which can be
regarded as a basic prerequisite for biological inertness. Met is the only aminoacid containing
CH2 − S − CH3 side chain (cys contains CH2 − S − H side chain and there are no other
aminoacids containing sulphur). Trp in turn is the only aminoacid containing two cyclic
chains.
This kind of arguments must be however taken with a big grain of salt as the following
argument shows. Proline differs from all other amino-acids in that the neutral group H3N

+−
COO−−C−H group is replaced by a charged H2N−COO−−C−H group and is therefore a
reasonable looking candidate for 0: pro is however coded by 4 DNAs which would correspond
to 2 n and n + 2 DNAs with 2 ≤ n ≤ 31.

2. At the level of biological function there is indeed a deep difference. The DNA triplet coding
for met acts almost universally (for deviations see [19]) as a starting codon which conforms
with the identification of met as an aminoacid representing either 0 or 1 (literally the first
aminoacid!) and having no other biological significance than telling where in a more complex
structure consisting of aminoacid sequences a structural basic element coded by single gene
begins.
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5.4 The deviations from the standard code as tests for the number the-
oretic model

One can take two different attitudes concerning the deviations from the universality of the code.
Since the deviations occur in mitochondrial genomes and in nuclear genomes of some unicellular

eukaryotes, one could argue that in these cases the code need not have achieved full negentropy
maximization and that NMP model does not apply. Even if NMP applies, one can argue that the
maps n(codon) → n, n → f(n), and even n → p(n) correspondence can differ dramatically from
that for the nuclear genome.

Second attitude would be that these codes correspond to different local maxima of total negen-
tropy and that the codes correspond to small perturbations of nuclear n(codon) → n, n → f(n)
correspondences.

The deviations from the standard genetic code [19] allow to test between these options, in partic-
ular the genetic variant of Negentropy Maximization Principle predicting that small perturbations
of f(n) inducing small perturbations of genetic code can affect only large values of n. Numerical
experimentation suggest that small perturbations of n(codon) → n, n → f(n) correspondences are
not in question.

5.4.1 Violations of universality for nuclear genes are consistent with the number
theoretical model

The violations of the universality [19] are very rare for nuclear genes. A few unicellular eukaryotes
have been found that use one or two of three stop codons to code amino-acids instead. The use
of two stop codons to code amino-acids necessarily violates the universality of the third column of
the code table.

These violations would be consistent with the hypothesis that the two stopping codons ATA and
ATG correspond to large values of n (most naturally 62 and 63) but do not force this model. For
the codes represented in Table 8 however ATA and ATG however correspond to n = 14, 15 so that
the modification of the code occurs at rather small values of n and the modifications of f(n) at these
values radiate their effect to all higher values of f(n) via the coupling Z(n) =

∑n
r=1 d(n, r)f(r)

and this effect is large in number theoretical sense. Hence small perturbations of n → f(n) and
n(codon) → n correspondences might not be enough and even n → p(n) correspondence might
need a modification. A detailed numerical computation is required to check whether the model
can reproduced the modified codes with some assignment f(n) of Boltzmann weights.

5.4.2 The mitochondrial deviations related to codons representing 0, 1, and stopping
sign

For the mitochondrial genes the situation is more complex. There are several kinds of deviations
and first kind of deviations related to codons representing 0, 1, and stopping sign.

1. Deviations

Consider first the exceptions associated with stopping codons and codons representing usually
0 and 1 in the proposed model.

1. Mitochondrial codon ACT from animals and micro–organisms (but not from plants) codes
trp instead of stopping sign. The problem is that trp corresponds to singly coded aminoacid
and should represent either 0 or 1.

2. Most animal mitochondria use TAT in the first column of the code table to code met instead
of ile coded usually 3 times. Also this is troublesome since met should correspond to n = 0
and be coded only once.
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Since both trp and met correspond to 0 and 1 in either order in the model, the question what it
means that DNA not representing 0 or 1 codes for 0 or 1. The working hypothesis is that met codes
for p = 1 whereas trp codes for 0 acting as a codon separating two functional units of aminoacid
sequence and being in this sense almost equivalent with stopping codon.

1. Does the notion of p = 1 codon make sense?

The condition Sp(n)(n) = 0 is the most general manner to define effective p = 1 codon whereas
stopping codon would has positive entropy. This requires that for effective p = 1 codons Z(n) is
divisible by p(n) and gives a negative contribution to Sp(n)(n) but despite this Sp(n) is vanishing
or positive.

Perhaps it is not a accident that the triply coded ile corresponds to the exceptional multiplet
with odd degeneracy. As proposed, single odd degeneracy could be understood if the partition
function has an approximate symmetry n → f(n) such that the DNA coding the third ile corre-
sponds to a fixed point of this symmetry. The fixed point codon would code for 1 in the sense
proposed rather than for ile.

In the proposed model p = 37 corresponds to ile and the ile transforming to met in yeast
mitochondria is coded by n = 37. Numerical search demonstrates that p(37) = 13 instead of
p(37) = 37 provides 3 modifications of f1(n) and 4 modifications of f2(n) for which p = 1 condition
is satisfied. The solutions f11(n) and f21(n) are identical with f1(n) and f2(n). Obviously this
solution is unique.

n 27 28 29 30 31 32 33 34 35 36 37 38 39
p(n) 23 23 0 29 29 23 31 31 31 31 13 37 43
f11(n) 7 6 21 28 20 27 33 33 21 21 21 30 24
f12(n) 7 6 21 28 20 27 33 33 21 21 22 29 23
f13(n) 7 6 21 28 20 27 33 33 21 21 30 21 15
f21(n) 3 6 21 24 24 31 33 33 17 17 9 38 32
f22(n) 3 6 21 24 24 31 33 33 17 17 10 37 31
f23(n) 3 6 21 24 24 31 33 33 17 17 21 26 20
f24(n) 3 6 21 24 24 31 33 33 17 17 22 25 19
n 40 41 42 43 44 45 46 47 48 49 50 51 52
p(n) 37 41 41 41 41 41 41 43 47 47 47 47 53
f11(n) 13 6 24 23 18 27 28 44 24 27 14 23 46
f12(n) 13 6 25 23 19 27 28 44 24 26 14 23 45
f13(n) 13 6 33 23 27 27 28 44 24 18 14 23 37
f21(n) 9 10 12 23 6 31 32 5 20 35 6 23 16
f22(n) 9 10 13 23 7 31 32 5 20 34 6 23 15
f23(n) 9 10 24 23 18 31 32 5 20 23 6 23 4
f24(n) 9 10 25 23 19 31 32 5 20 22 6 23 3
n 53 54 55 56 57 58 59 60 61 62 63
p(n) 53 53 53 59 61 59 59 59 61 61 61
f11(n) 29 26 25 56 10 49 15 10 4 27 55
f12(n) 29 26 25 56 10 49 16 10 4 27 56
f13(n) 29 26 25 56 10 49 24 10 4 27 3
f21(n) 5 48 45 41 14 56 9 27 8 35 16
f22(n) 5 48 45 41 14 56 10 27 8 35 17
f23(n) 5 48 45 41 14 56 21 27 8 35 28
f24(n) 5 48 45 41 14 56 22 27 8 35 29
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Table 9. n → p(n) correspondence allowing three different Boltzmann weights f1i(n) and 4
different Boltzmann weights f2i(n) as perturbations of f1(n) and f2(n). f11 = f1 and f21 = f2

implies that these ”perturbations” are unique and correspond to p(37) = 13 instead of p(37) = 37.
The table lists only the rows for which deviation from f1(n) and f2(n) occurs.

3. What coding of p = 0 could mean?

What it means that n > 0 codes instead of stopping sign for 0 is more difficult to interpret
unless 0 indeed effectively represents an aminoacid (trp) separating functionally independent units
of aminoacid sequence effectively coded by separate genes and stopping sign in this sense. One
might think that code has evolved like a computer program via modularization so that in the
advanced form of the code DNA sequences code only for the basic building aminoacid sequences
rather than their composites separated by exotic aminoacids. Other deviations are consistent with
the genetic variant of Negentropy Maximization Principle.

5.4.3 The anomalous behavior of yeast mitochondria

Yeast mitochondria use GAX codons in the first column to code for thr (coded by 4 codons usually)
instead of leu (coded by 6 codons usually). For the n → p(n) correspondences motivated by the
mapping n(codon) → n, the deviation would mean that the integers n = 40 − 43 code for p = 53
(thr) besides n in the range 52-55. A rough modular arithmetics based estimate for the probability
that this occurs for single codon is roughly n/p for n < p so that the total probability for this to
occur would be P = 40 × 41 × 42 × 43/534 ' .38. It turns out that n = (40, 41, 42, 43) fails to
code for p = 53. Thus mitochondrial code and nuclear code for yeast should have slightly different
n(codon) → n correspondence. The modification

p(40, 41, 42, 43, 44, 45, 46, 47) = (41, 41, 41, 41, 41, 41, 43, 43)
→ (53, 53, 41, 53, 53, 43, 43, 41)

is consistent with negentropy maximization. This means that the permutations (42 ↔ 44) and
(45 ↔ 47) distinguish the map n(codon) → n from that for the nuclear code. The modification is
given in the table below.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13
nuclear 0 3 3 5 5 2 2 7 7 11 11 13 13
f2(n) 1 2 3 2 2 2 1 4 6 5 1 12 7
n 14 15 16 17 18 19 20 21 22 23 24 25 26
nuclear 0 0 17 17 19 19 19 19 23 23 61 61 23
f2(n) 4 12 2 6 12 12 7 5 16 11 15 17 7
n 27 28 29 30 31 32 33 34 35 36 37 38 39
nuclear 23 23 0 29 29 23 31 31 31 31 37 37 43
f2(n) 3 6 21 24 24 31 33 33 17 17 15 32 26
n 40 41 42 43 44 45 46 47 48 49 50 51 52
nuclear 37 41 41 41 41 41 41 43 47 47 47 47 53
yeast 53 53 41 53 53 43 43 41 47 47 47 47 53
f2(n) 9 10 18 23 12 31 32 5 20 29 6 23 10
f(n) 13 2 18 22 10 3 36 42 14 29 4 20 7
n 53 54 55 56 57 58 59 60 61 62 63
nuclear 53 53 53 59 61 59 59 59 61 61 61
yeast 41 59 41 61 41 59 59 59 61 61 61
f2(n) 5 48 45 41 14 56 15 27 8 35 22
f(n) 53 53 53 59 61 59 59 59 61 61 61

Table 9. n → p(n) correspondence allowing single distribution f(n) of Boltzmann weights
consistent with the genetic code of yeast mitochondria obtained by a small modification of the
correspondence n → p(n) implied by the map n(codon) → n discussed above. The n → f(n)
correspondence results as a modification of n → f2(n) for nuclear genetic code so that this option
is favored by universality. Only the rows of n → p(n) and n → f(n) correspondences differing
from those for the nuclear code are given in the table. The correspondences for nuclear genetic
code are also shown in the table for comparison purposes.

5.4.4 The deviations associated with exotic aminoacids and stopping sign codons

There are also two non-standard amino-acids: selenocysteine and pyrrolysine.

1. Selenocysteine is encoded by ACT (fourth column) coding stopping sign normally. Inter-
estingly, ACT codes also stopping sign and the translation machinery is somehow able to
discriminate when selenocysteine is coded instead of stop. This codon usage has been found
in certain Archaea, eubacteria, and animals. This deviation means that the number of
amino-acids is 21 or 20 depending on context.

2. In one gene found in a member of the Archaea, exotic amino-acid pyrrolysine is coded by
ATC, which corresponds to the lower stopping sign in the code table. This case represents
the only deviation from universality of the third column of the code table but even in this
case also stopping sign is coded. How the translation machinery knows whether to code
pyrrolysine or to stop translation is not yet known.

These deviations are consistent with the number theoretical models discussed in [L2, L4]
for which number 21 indeed has a deep number theoretical meaning and assuming that
stopping sign can be regarded formally as an amino-acid. In the recent model a reasonable
looking interpretation of the exotic aminoacids is as variants of stopping sign in some sense.
For instance, the resulting aminoacid sequences could consist of separate functional units
separated by selenocysteine/pyrrolysine.
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To sum, all deviations challenging the number theoretic model discussed in this chapter are
associated with mitochondrial genome only and involve stopping sign codons, codons representing
0 and 1 and exotic aminoacids.

5.5 Model for the evolution of the genetic code and the deduction of
n → p(n) map from the structure of tRNA

In [L4] a detailed model for the evolution of the genetic code is developed. The hypothesis is
that recent DNA-aminoacid code evolved from a code mapping RNA triplets to RNA triplets with
the mediation of pre-RNA catching RNA molecules from environment and bringing them to the
growing RNA sequence. Aminoacids served originally as catalyzers of the reaction but at some
stage began attach to the growing RNA sequence after which RNA sequence become un-necessary
and only aminoacid sequence remained.

In the recent framework tRNA would represent the mapping of integers represented by RNA
as sequences in 64 base to RNAs representing sequences of primes. Genetic coded literally mapped
RNA representing integer 0 ≤ n ≤ 63 to an RNA representing the prime p(n). The map n → p(n)
could be determined up to a permutation of the 18 primes 2 ≤ p ≤ 61 and permutations of integers
mapped to same p (not larger than 6) from the structure of the recent tRNA since tRNA molecules
could still contain RNA pairs representing n(p) − p pairs. That mRNA-RNA correspondence at
the level of tRNA would represent n → p(n) correspondence means that there is no need to ponder
the problem how to assign to a given aminoacid the corresponding prime p: tRNA-aminoacid
correspondence would be determined by biochemistry.

5.6 Genetic code as a product of singlet and doublet codes?

The model of the genetic code applies to any number n of DNAs and maps the numbers n =
0, 1...n − 1 to {0, 1} ∪ {primes p ≤ n − 1}. In [L4] a model for the genetic code resulting via
a symmetry breaking from the product of codes associated with 16 DNA doublets and 4 DNA
singlets was considered. At the level of DNAs the product code is very natural and the almost
symmetries of the genetic code with respect to the last codon support the idea.

The product structure at the level of aminoacids is however not at all manifest and seems
to be absent. This is what the number theoretical model predicts. The primes associated with
the product of singlet and doublet codes have no natural composition into products of primes
associated with singlet and doublet codes. Nor is the number of these primes product of numbers
of primes associated with singlet and doublet codes.

6 Exponential thermodynamics does not work

In the following various unsuccessful attempts to understand genetic code in terms of exponential
thermodynamics using Hamiltonian H(r) = r are summarized.

6.1 What can one conclude about p-adic temperature associated with
the genetic code in the case of exponential thermodynamics?

Ordinary thermodynamics suggests that also in the case of exponential thermodynamics temper-
ature should be non-negative. This would boil down to basic requirement q0 = r0/s0 > 1 charac-
terizing the genetic temperature. This condition has been however dropped in computations since
it is not mathematically necessary in the case of finite state system.

The work with exponential thermodynamics is restricted to the bosonic case. As already found,
the fermionic high temperature limit is extremely unrealistic. One important requirement is that
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also the primes 37 and 61 can appear as divisors in the generalization of d(n) to be discussed. For
the remaining primes the most conservative, and probably unrealistic, assumption would be that
the arguments of the logarithms appearing in Sp are unaffected so that only the reduction of large
r contributions would reduce the degeneracies of over-represented primes. It seems that for small
over-represented primes the norms of logarithms must be affected.

The requirement that all entropies Sp(n)(n) associated are negative poses strong conditions on
q0, and this might not be possible for all n. The entropic or zero entropy integers could correspond
to stopping sign codons.

1. Conditions on q0

Writing q0 = r0/s0 > 1 one can express Sp and assuming H = r − 1 and Tr = 1 in terms of
integers alone:

Sp(n) =
n∑

r=1

p(n, r)(
r0

s0
)−r+1log(|r

n−r+1
0 sr−1

0

d̂(n)
|p) ,

d̂(n) =
n∑

r=1

d̂(n, r) ,

d̂(n, r) = rn−r+1
0 sr−1

0 d(n, r) . (12)

The use of different representation for p(n, r) and the argument of logarithm is especially convenient
in the numerical calculation of entropy since modular arithmetics can be applied to deduce the
argument of logarithm.

To make the representation more fluent, introduce the set QR as subset of primes p ∈ P =
{2, 3, ..., 61} by excluding primes in the set R ⊂ P. It turns out that Q = P \ R condition is
too restrictive and hence the subscript R is added to the definition. The minimal choice for R is
Rmin = {37, 61} but also 23 is a reasoanable candidate for an element of R. More explicitly,

Qmax = P \ Rmin = {2, 3, 5, 7, 11, 23, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59} .

Define also integer XQ as the product of primes in Q:

X =
∏

pk∈Q
pk . (13)

Consider now the conditions on q0 in more detail.

1. Every prime 2 ≤ p ≤ 61 must divide d̂(n) for some values of n(p) in order that the prime in
question has integers n mapped to it. This has two implications. First, the arguments of the
logarithms appearing in the entropy should remain invariant for all primes in Q to guarantee
that no prime is lost. Secondly, for each prime q ∈ {23, 31, 61} there should exist nq such
that d̂(n) is divided by q and q corresponds to the largest prime power of prime in d̂(n).

2. Stopping sign codons correspond to zero information integers n not containing p ≤ 61 in
their decomposition to primes. Assume that n = 13 and 36 remain such primes so that d̂(13)
and d̂(36) remain indivisible by p ≤ 61. Also a third similar integer must emerge in finite
temperature thermodynamics.

2. Conditions for primes in Q
Consider now these conditions for primes in Q.
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1. The p-adic norms of d̂(n, r) and d̂(n) are same as those of d(n, r) and d(n) if the conditions

r0 mod p = 1 , s0 mod p = 1 (14)

hold true. This guarantees that logarithms appearing in Sp are unaffected.

2. These conditions could hold for all primes in Q and can be satisfied by the ansatz:

r0 = 1 + R0X , s0 = 1 + S0X ,

X =
∏

pk∈Q
pk .

(15)

Note that one must have R0/S0 > 1 in order to have a positive temperature T .

3. The condition QR = P \ R is un-necessarily restrictive. One can also consider the situation
in which one drops some over-represented small primes from X. The dropping of say p = 7
and p = 11 could make possible the representability of 23 appearing as a factor in d(32) =
3× 112× 23 and d(33) = 32× 72× 23. In fact, the dropping of all small primes p ≤ 11 might
cure at single stroke the over-representability problem. They are probably not lost totally
since they have a considerable probability to appear as factors in d̂(n).

3. Conditions for primes in R
Consider next the situation for a prime q ∈ R, say Rmin = {37, 61}. The task is to deduce

conditions on the integers (R0, S0).

1. There must exist at least one nq such that d̂(nq) is divisible by q:

d̂(nq) = mod q = 0 , q ∈ R ,

d̂(nq) =
nq∑

r=1

d̂(nq, r) ,

d̂(nq, r) = (1 + R0X)nq−r+1(1 + S0X)r−1d(nq, r) ,

X =
∏

pk∈S

pk . (16)

S0 and R0 satisfying these conditions for some nq can be found by a direct numerical search.

2. For each nq there must exist at least one rq satisfying the condition

d̂nqrq mod q 6= 0 , q ∈ R . (17)

These conditions are very general and allow many solutions (R0, S0).

i) For Rmin = {37, 61} and Qmax = QRmin one can use the conditions XQ = Xmin mod 37 =
7 and Xmin mod 61 = 1 to reduce conditions to a numerically more tractable form
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n37∑
r=1

(1 + 7R0)n37−r+1(1 + 7S0)r−1d(n37, r) mod 37 = 0 ,

n61∑
r=1

(1 + R0)n61−r+1(1 + S0)r−1d(n61, r) mod 61 = 0 . (18)

ii) If one drops the over-represented small primes p ≤ 11 from X one obtains XQ =
Xmin mod 37 = 27 and Xmin mod 61 = 40. In this case conditions are obtained from
previous ones by the replacement (7, 1) → (27, 40).

iii) For R = {23, 37, 61} one would have XR mod 23 = 10, X mod 37 = 22 and X mod 61 = 2
and one would have the conditions

n23∑
r=1

(1 + 10R0)n37−r+1(1 + 10S0)r−1d(n37, r) mod 23 = 0 ,

n37∑
r=1

(1 + 22R0)n37−r+1(1 + 22S0)r−1d(n37, r) mod 37 = 0 ,

n61∑
r=1

(1 + 2R0)n61−r+1(1 + 2S0)r−1d(n61, r) mod 61 = 0 . (19)

6.2 Low temperature limit of exponential thermodynamics

The case s0 = 1 (S0 = 0) corresponds to integer valued q0 and to the low temperature limit of
number theoretical thermodynamics characterized by R0 alone. In this case only r = 1 partition
contributes significantly to Sp(n) and one expects that the genetic code is determined by the
decomposition of the probability p(r = 1) = rn

0 /d̂(n) to prime factors. The positive contribution
to information comes from d̂(n) so that in practice this is of primary interest.

The deduction of primes minimizing Sp(n) can be done conveniently by separating the calcu-
lation of the exponents of the p-adic norms from the calculation of probabilities. The calculation
of the probabilities from their basic formulas is convenient due to the rapid convergence of the
exponents (1 + R0X)−r+1 r = 1 term indeed gives an excellent approximation to Sp(n) so that
the decomposition of d̂(n) to primes determines p(n) completely unless d(n, r) compensates for
the exponential decrease. This might of course mean that the assumption S0 = 1 is not realistic.
The study of the low temperature limit in detail can however provide valuable information about
a more realistic model.

The overall idea is simple.

1. The primes inRmin = {37, 61}must divide d̂(n) for some values of n and these give conditions
on R0.

2. Sum of the over-represented small primes n ≤ 11 can be dropped from Q and thus from XQ

to see whether d̂(n) is not anymore divisible by these primes so often.

The computational algorithm for finding candidates for realistic genetic codes uses the fact that
the number N of DNA triplets coding given aminoacid is never large than 6 for the real genetic
code.

1. Form an array of plausible looking choices of X labelling the models to be studied.
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2. Calculate the allowed values of R0 for a given model X and arrange them to a vector.

3. Calculate the components of the vector p(n) for allowed values of R0 for given X one by
one. Keep count of the number of occurrence Nn(i) = N(p(i)) of prime p(i) i = 1, , ..18 for
given (X, R0) as n increases. If the number max{Ni, i = 1, .., 18} exceeds 6, stop the further
scanning of n values as useless and start to test the next value of R0.

Preliminary calculations suggest that the predictions of low temperature thermodynamics do not
differ in an essential manner from those of high temperature thermodynamics. The problem is still
posed by the over abundance of small primes. The reason is that in the decomposition of integer
small primes are most abundant whereas large primes are rare. The probability that small prime
p divide random integer is P = 1/p. p = 11 seems to be the boundary between under-represented
primes and over-represented primes. Typically about 40 integers code for primes p ≤ 11.

6.3 How to find the critical temperature in exponential thermodynam-
ics?

The challenge is to understand whether and how S0 > 0 could cure the situation and whether there
exists something analogous to a critical temperature in the sense that large long range fluctuations
for ordinary criticality correspond to large degeneracies for large primes. From the point of view
the association of a number theoretical critical temperature to genetic code would be rather natural
since in TGD framework living systems indeed are quantum critical systems. and genetic code
should be be something completely exceptional.

The following arguments give some glimpse about what criticality might mean.

1. For r0 ∼ s0 near criticality the probabilities p(n, r) = rn−r
0 sr

0p(n, r)/d̂(n) are of same order
of magnitude so that all values of r contribute significantly to Sp(n) as in the case of infinite
temperature limit. Individual contributions are however relatively small for large values of
n̂.

2. In the argument of logarithm the small primes appearing as factors of rn−r
0 s

(
0r − 1)p(n, r)

tend to compensate the small primes dividing d̂(n) =
∑

r rn−r
0 s

(
0r − 1)d(n, r) so that only a

small number of terms with negative entropy remains and the small value of p(n, r) means
that overall contribution is small.

The cautious conclusion is that at criticality r0 and s0 should be near to each other. There are
however tight constraints. For instance, for s0 = 1 r0 cannot be divisible by primes 2 ≤ p ≤ 61 since
in this case the partition functions would not be divisible by any of these primes and corresponding
aminoacids would not be coded at all. There one must have r0 ≥ 67, s0 ≥ 67 in order to not lose
the primes from the partition function.

The preliminary computations with small values of r0 and s0 near shows that realistic looking
degeneracies result except for p = 2 whose degeneracy is of order 40 typically: it seems that the
spectral power is shifted from primes p ≤ 11 to p = 2. The very special character of p = 2 suggests
a possible remedy. Perhaps the integers 0,1,2 should be mapped to themselves by genetic code and
only odd primes compete in the variational principle. This would however mean that the number
of aminoacids coded by single DNA would be 3 rather than the observed 2 consistent (0, 1) → (0, 1)
hypothesis. This option can work only if one maps some other DNAs than 0 (1) to 0 (1). This
could make sense only in the case that all primes give Sp(n) = 0 for some n. It turns out that
the dropping of p = 2 only shifts the spectral power to p = 3 for checked small values of (r0, s0).
It seem that if the idea of criticality is not enough unless one has clear idea about what makes
(r0, s0) critical.
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The first TGD inspired model for genetic code was based on the Combinatorial Hierarchy M(n+
1) = MM(n) = 2M(n) − 1 starting from M(1) = 2 and giving Mersenne primes 3, 7, 127, 2127 − 1.
M7 = 127 corresponds to genetic code. This inspires the idea that perhaps (r0 = M7, s0 = 1) might
be worth of checking. The parameter values r0 = 127, s0 = 1 indeed yield the first example for
which the spectral power for primes p ≤ 11 is reasonably small and equal to 17. 22 units of spectral
power however concentrates on p = 25 − 1 = 31, the Mersenne prime below M7! many primes are
lacking from the spectrum. In any case, it would seem possible to distribute the spectral power
outside the small prime region but it is clear that genetic code would be number theoretically
something extremely special of realized in this manner.

For s0 > 1 spectral power again concentrates on p = 2. Since M127 corresponds to the
Mersenne assigned to the memetic code, natural curiosity leads to check what happens in this
case. All spectral power concentrates to p = 2 in this case: this is nothing but 2-adic spontaneous
magnetization! It seems that this phenomenon occurs quite generally for very large values of r0.

There might be something wrong with the program making the modulo arithmetics. For even
values of r0 partition function should be odd and p = 2 would give positive contribution to entropy.
The general finding is that p = 2 is highly degenerate. This is possible only if the partition function
fails to be divisible for primes 2 ≤ p ≤ 61 for very many values of n. Even this does not help for
r0 = 2n since in this case p > 2 gives non-positive entropy for all values of n.

7 Appendix

The appendix sums up some computational aspects of the model and represents the models for
doublet and singlet genetic codes as toy models.

7.1 Computational aspects

7.1.1 Calculation of partition numbers d(n, r)

The basic problem in the calculation of partition numbers p(n, r) is the presence of partitions
containing same integer several times. This problem can be circumvent by arranging the integers
in the partition in decreasing order so that one has n1 ≥ n2... ≥ nr. Using this ordering the
calculation of partition numbers d(n, r)

d(n, r) =
n−r+1∑

k=1

d(n− k, r − 1|k) , (20)

where d(n, r|k) denotes the number of partitions for which the first number n1 satisfies n1 ≤ k.
The formula states that the ordered r-partitions of n decompose as (k, n1, ...nr−1), k ≤ n− r − 1
such that r − 1-partition (n1, ..., nr−1) satisfies n1 ≤ k by the ordering assumption.

What one must calculate are the numbers d(n− k, r|k) and this can be done recursively

d(n, r|k) =
∑

k1≤k

d(n− k1, r − 1|k1) . (21)

The basic data item besides these formulas is d(1, 1) = 1. Also d(n, n) = 1 and d(n, 1) = 1 can be
used.

The algorithm becomes time consuming for n > 50 and larger partition numbers are conve-
niently calculated by using the recurrence relation [18]
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P (n, k) = P (n− 1, k − 1) + P (n− k, k) . (22)

The numbers Q(n, k) of partitions of n to integers such that same integer does not appear twice
are obtained from the formula [18]

Q(n, k) = P (n−
(

k
2

)
, k) . (23)

7.1.2 Numerical treatment of n0 < 0 polynomial thermodynamics

The numerical treatment of n0 < 0 polynomial thermodynamics is somewhat tricky and deserves
a separate discussion. For definiteness the consideration is restricted to H = log(r + r0) case with
T = 1/n0. The generalization to other critical Hamiltonians is trivial.

For n0 = −m < 0 case the entropy has the expression

Sp(n) =
n∑

r=1

p(n, r)
[
mlog(| (n + r0)

r0!(r + r0)
|p)

]
− log(|Z(n)|p)

=

[
n+r0∑

i=r0+2

kp(i)−
∑

r

p(n, r)kp(r + r0)

]
mlog(p)− log(|Z(n)|p)

Z(n) =
n∑

r=1

[
(n + r0)!

r0!(r + r0)

]m

d(n, r) . (24)

Here kp(n) is defined by the p-adic norm |n|p = pkp . The integers appearing as coefficients of
d(n, r) in Z are very large and this causes numerical difficulties since factorials are represented
precisely as integers only up to 21! and mod operation gives zero above this limit.

In order to calculate the p-adic norm of Z one must perform modulo pk operations for Z by
doing it separately for each summand and summing the resulting expressions. The problem is that
the modulo pk operation for the products involved does not reduce it to a small integer when p is
large and one is forced to do the sum of large integers.

The solution of the problem is provided by finite field arithmetics. Start with the expression
of Z(n) written as

Z(n) =
n∑

r=1

1
(r + r0)m

d(n, r) . (25)

Since the calculation of p-adic norm involves only repeated modulo p operations to check whether
the result vanishes modulo p, and if it does, a subsequent division by p, it suffices to interpret the
factors (1/(r + r0)m as elements of finite field G(p, 1).

1. If the condition r + r0 mod p 6= 0 holds true, all denominators are non-vanishing. This is the
case when r0 + 1 ≤ p ≤ n + r0 holds true. In this case it suffices to calculate the inverses
(r + r0)−1

p of r + r0 in G(p, 1) and replace Z(n) with

Ẑ(n) =
n∑

r=1

[
(r + r0)−1

p

]m
d(n, r) . (26)
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The resulting expression is free of overflow problems and its p-adic norm can be calculated
without difficulties.

2. When the condition r + r0 mod p 6= 0 fails to be satisfied poles appear at r = rk = kp− r0,
kmin = [(1 + r0)/p] + 1 ≤ k ≤ kmax = [(n + r0)/p], where [x] denotes nearest integer smaller
than x. Note that the problem is not encountered for r0 > 60. The trick is to express Z in
the form

Z(n) =
1
X
× Ẑ(n) ,

Ẑ(n) =
∑

r 6=kp−r0

X × [
(r + r0)−1

p

]m × d(n, r)

+
kmax∑

k=kmin

Xk × d(n, kp− r0) ,

X =
∏

k

(rk + r0)m =
kmax∏

i=kmin

(ip)m =

(
kmax∏

i=kmin

i

)m

pm(kmax−kmin) ,

Xk =
X

(rk + r0)m
=

(∏kmax

i=kmin
i

k

)m

× pm(kmax−kmin−1) . (27)

This expression involves only relatively small integers and overflow problems are avoided.

kp(X) can be expressed in the form

kp(X) = m

[
kmax∑

kmin

kp(k)− kmax + kmin

]
. (28)

To sum up, the expression for Sp(n) reduces in (n0 = −m < 0, r0) case to the form

Sp(n)
log(p)

=

[
n+r0∑

i=r0+2

kp(i) +
kmax∑

kmin

kp(k)− kmax + kmin −
n∑

r=1

p(n, r)kp(r + r0)

]
m

− kp(Ẑ(n)) ,

Ẑ(n) =
∑

r 6=kp−r0

X
[
(r + r0)−1

p

]m
d(n, r) +

kmax∑

k=kmin

Xk × d(n, kp− r0) ,

X =

(
kmax∏

i=kmin

i

)m

pm(kmax−kmin) ,

Xk = =

(∏kmax

i=kmin
i

k

)m

× pm(kmax−kmin−1) ,

kmin = [(1 + r0)/p] + 1 , kmax = [(n + r0)/p] . (29)

In the nonsingular case 1) X = 1 and Xi = 0 holds true.
In practice r 6= rk terms do not contribute to k(Ẑ(n)) unless all d(n, kp − r0) happen to be

divisible by a large power of p. The highest power of p ≤ 61 appearing in d(n, r) is 4 for n ≤ 63.
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For the sake of generality and safety it is however better to keep also these contributions in the
formula.

7.2 Number theoretic model for singlet and doublet codes as a toy model

The model of the genetic code applies to any number n of DNAs and maps the numbers n =
0, 1...n − 1 to {0, 1} ∪ {primes p ≤ n − 1}. In [L4] a model for the genetic code resulting via
a symmetry breaking from the product of codes associated with 16 DNA doublets and 4 DNA
singlets was considered. At the level of DNAs the product code is very natural and the almost
symmetries of the genetic code with respect to last codon support the idea.

7.2.1 Singlet code

In the case of singlet code the requirement that at least single stopping sign codon exists, implies
that either p = 2 or p = 3 fails to be coded. This would conform with the idea that n = 3 =
−1 mod 4 represents automatically stopping sign and 3 aminoacids would be coded. Fermionic
entropy vanishes identically with this assumption.

It is perhaps instructive to consider the singlet codes at low temperature limit of exponential
thermodynamics for (r0 > 1, s0 = 1) to get some grasp of the situation. Singlet code gives
(d̂(1), d̂(2), d̂(3)) = (1, 1 + r0, 1 + r0 + r2

0). The probabilities p(n, r) are p(n, r) = rn−r
0 /d̂(n) and

entropy can be written as

Sp(n) = − rm
0

1 + r0 + .. + rn
0

n∑
m=1

log(| rm
0

1 + r0 + ... + rn
0

|p) . (30)

For r0 = 2 resp. r0 = 3 one has (d̂(1), d̂(2), d̂(3)) = (1, 3, 7) and (d̂(1), d̂(2), d̂(3)) = (1, 4, 13).
For r0 = 2 the code is (0, 1, 2, 3) → (0, 1, 3, stop) with n = 3 having vanishing entropy and thus
naturally acting as stopping codon. p = 2 is not coded. For r0 = 3 the code is (0, 1, 2, 3) →
(0, 1, 2, stop). p = 3 is not coded.

Allowing s0 > 1 does not allow to circumvent these problems. In this case the formula for
entropy reads as

Sp(n) = − 1
sn
0 + r0s

n−1
0 .. + rn

0

n∑
m=1

rm
0 sn−m

0 log(| rm
0 sn−m

0

sn
0 + r0s

n−1
0 .. + rn

0

|p) .

(31)

For (r0 = 3, s0 = 2) the denominator is not divisible by 2 or 3 so that all codons possess vanishing
or negative information. The conclusion is that the mapping of 3 = −1mod4 to stopping codon is
the only consistent option.

For polynomial thermodynamics with Boltzmann weights given by (r + r0)n0 there is a large
number of parameter combinations giving single stopping codon which is always n = 2.

7.2.2 Doublet codes

Doublet code should map the integers 0, 1..., 14(15) to primes 0, 1, 2, 3, 5, 7, 11, 13. The inspection
of the tables 1 and 2 shows that at infinite temperature limit p = 13 fails to coded for both B,F,
and BF and also p = 7 for F. n = 13 is not coded to a unique prime for B. The parameter
values are restricted to the range (n0, r0) ∈ ({1, 5}, {0, 5}) in the polynomial case and to the range
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(r0, s0)({1, 5}, {1, 5}) in the exponential case. The findings support the view that polynomial
thermodynamics is the only viable approach.

1. Stopping sign codons as codons with Sp < 0

For finite temperature thermodynamics the conditions used are that least one stopping codon
having by definition Sp < 0 exists and all primes p ≤ 13 must be coded.

1. For finite temperature polynomial thermodynamics the cases F and BF allow no solutions
whereas B allows four solutions ((n0, r0) = (1, 5), (2, 1),
(2, 5), (3, 3)).

2. For exponential thermodynamics neither, B, F, nor BF allow solutions.

2. Stopping sign codons as n = 15 codon or codons with Sp < 0

One could argue that since n = 15 corresponds to −1 in modulo 16 mathematics, it should
code for stopping sign. If so, the situation changes.

1. Polynomial thermodynamics.

In BF case (n0, r0) = (1, 1) provides in the range (n0, r0) ∈ ({1, 5}, {0, 5}) the only example
of a genetic code for which all primes p ≤ 13 are coded. One can say that supersymmetric
option fixes the code uniquely in this parameter range. F allows no solutions. B allows 4
solutions ((n0, r0) = (1, 2), (2, 1), (2, 5), (3, 3)).

2. Exponential thermodynamics

Neither B, F, nor BF type thermodynamics allow solutions.

n dB(n) pB(n) dF (n) pF (n) pBF (n)
0 1 1 1 0 0
1 1 1 1 1 1
2 2 2 1 1 2
3 3 3 2 2 3
4 5 5 2 2 5
5 7 7 3 3 7
6 11 11 4 2 11
7 3 × 5 5 5 5 5
8 2 × 11 11 6 3 11
9 2 × 3 × 5 5 8 2 2
10 2 × 3 × 7 7 10 5 3
11 23 × 7 2 12 2 2
12 7 × 11 11 15 5 11
13 101 (prime) ? 18 3 3
14 33 × 5 3 22 11 3
15 24 × 11 2 27 3 3

Table 10. The table represents the partition numbers dB(n) and dF (n) as well as the primes
pB(n),pF (n), pBF (n) resulting from the minimization of the p-adic entropy SI,p(n), I = B, F,BF
as a function of n for n < 16.
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