
p-Adic Particle Massivation: Hadron Masses

M. Pitkänen1, April 8, 2007

1 Department of Physical Sciences, High Energy Physics Division,
PL 64, FIN-00014, University of Helsinki, Finland.

matpitka@rock.helsinki.fi, http://www.physics.helsinki.fi/∼matpitka/.

Recent address: Puutarhurinkatu 10,10960, Hanko, Finland.

Contents

1 Introduction 5
1.1 Construction of U and D matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Observations crucial for the model of hadron masses . . . . . . . . . . . . . . . . . 7

1.2.1 The p-adic mass scales of quarks are dynamical . . . . . . . . . . . . . . . . 7
1.2.2 Quarks give dominating contribution to the masses of pseudoscalar mesons 7
1.2.3 Higgs contribution to fermion masses is negligible . . . . . . . . . . . . . . . 7
1.2.4 Conformal weights are additive for quarks with same p-adic prime . . . . . 7
1.2.5 A remark about terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.6 Super-canonical bosons at hadronic space-time sheet can explain the constant

contribution to baryonic masses . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.7 Color magnetic spin-spin splitting formulated in terms of conformal weight 9

1.3 A possible model for hadron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Quark masses 10
2.1 Basic mass formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The p-adic length scales associated with quarks and quark masses . . . . . 11
2.1.2 Can Higgs field develop a vacuum expectation in fermionic sector at all? . . 14

2.2 Are scaled up variants of quarks also there? . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Aleph anomaly and scaled up copy of b quark . . . . . . . . . . . . . . . . . 14
2.2.2 Scaled variants of top quark . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Scaled up variants of d, s, u, c in top quark mass scale . . . . . . . . . . . . 15
2.2.4 Fractally scaled up copies of light quarks and low mass hadrons? . . . . . . 17

3 Topological mixing of quarks 17
3.1 Mixing of the boundary topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The constraints on U and D matrices from quark masses . . . . . . . . . . . . . . . 19

3.2.1 The constraints on |U | and |D| matrices from quark masses . . . . . . . . . 19
3.2.2 Unitarity conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Constraints from CKM matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Construction of U , D, and CKM matrices 24
4.1 The constraints from CKM matrix and number theoretical conditions . . . . . . . 24
4.2 Number theoretic conditions on U and D matrices . . . . . . . . . . . . . . . . . . 25
4.3 The parametrization suggested by the mass squared conditions . . . . . . . . . . . 28
4.4 Thermodynamical model for the topological mixing . . . . . . . . . . . . . . . . . . 30

4.4.1 Solution of thermodynamical model . . . . . . . . . . . . . . . . . . . . . . 30

1



4.4.2 Mass squared conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Probability conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.4 The analogy with spontaneous magnetization . . . . . . . . . . . . . . . . . 32
4.4.5 Catastrophe theoretic description of the system . . . . . . . . . . . . . . . . 32
4.4.6 Maximization of entropy solving constraint equations explicitly . . . . . . . 34

4.5 U and D matrices from the knowledge of top quark mass alone? . . . . . . . . . . 35
4.5.1 U and D matrices as perturbations of matrices mixing only the first two genera 35
4.5.2 Direct search of U and D matrices . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.3 Direct search for CKM matrices . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Hadron masses 40
5.1 The definition of the model for hadron masses . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Model for hadronic quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Quark mass contribution to the mass of the hadron . . . . . . . . . . . . . 42
5.1.3 Super-canonical gluons and non-perturbative aspects of hadron physics . . 43
5.1.4 Top quark mass as a fundamental constraint . . . . . . . . . . . . . . . . . 43
5.1.5 Smallness of isospin splittings . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 The anatomy of hadronic space-time sheet . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Quark contribution cannot dominate light baryon mass . . . . . . . . . . . 44
5.2.2 Does k = 107 hadronic space-time sheet give the large contribution to baryon

mass? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 What is responsible for the large ground state mass of the baryon? . . . . . 45
5.2.4 Glueballs cannot be in question . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.5 Do exotic colored bosons give rise to the ground state mass of baryon? . . . 46
5.2.6 What about mesons? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Pseudoscalar meson masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 Light pseudoscalar mesons as analogs of Goldstone bosons . . . . . . . . . . 49
5.3.2 Quark contributions to meson masses . . . . . . . . . . . . . . . . . . . . . 50
5.3.3 An example about how the mesonic mass formula works . . . . . . . . . . . 51

5.4 Baryonic mass differences as a source of information . . . . . . . . . . . . . . . . . 52
5.5 Color magnetic spin-spin splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 The model based on spin-spin interaction energy fails . . . . . . . . . . . . 53
5.5.2 The modelling of color magnetic spin-spin interaction in terms of conformal

weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5.3 The modelling of color magnetic- spin-spin splitting in terms of super-canonical

boson content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Color magnetic spin-spin interaction and super-canonical contribution to the mass

of hadron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.1 Baryonic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.2 Pseudo scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.3 Formulas for sc(H) for mesons . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.4 Formulas for sc(H) for baryons . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.5 The conformal weights associated with spin-spin splitting . . . . . . . . . . 56
5.6.6 General mass formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6.7 Spin-spin interaction conformal weights for baryons . . . . . . . . . . . . . 58
5.6.8 Spin-spin interaction conformal weights for mesons . . . . . . . . . . . . . . 59

5.7 Summary about the predictions for hadron masses . . . . . . . . . . . . . . . . . . 61
5.7.1 Meson masses assuming that all pseudoscalars are Goldstone bosons . . . . 62
5.7.2 Meson masses assuming that only pion and kaon are Goldstone bosons . . . 62
5.7.3 Baryon masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2



5.8 Some critical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8.1 Is the canonical identification the only manner to map mass squared values

to their real counterparts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8.2 Uncertainties related to the CP2 length scale . . . . . . . . . . . . . . . . . 66

3



Abstract

In this chapter the results of the calculation of elementary particle masses will be used to
construct a model predicting hadron masses.

1. Topological mixing of quarks

In TGD framework CKM mixing is induced by topological mixing of quarks (that is 2-
dimensional topologies characterized by genus). Number theoretical constraints on topological
mixing can be realized by assuming that topological mixing leads to a thermodynamical equi-
librium. This gives an upper bound of 1200 for the number of different U and D matrices and
the input from top quark mass and π+ − π0 mass difference implies that physical U and D
matrices can be constructed as small perturbations of matrices expressible as direct sum of
essentially unique 2 × 2 and 1 × 1 matrices. The maximally entropic solutions can be found
numerically by using the fact that only the probabilities p11 and p21 can be varied freely. The
solutions are unique in the accuracy used, which suggests that the system allows only single
thermodynamical phase.

The matrices U and D associated with the probability matrices can be deduced straight-
forwardly in the standard gauge. The U and D matrices derived from the probabilities de-
termined by the entropy maximization turn out to be unitary for most values of n1 and n2.
This is a highly non-trivial result and means that mass and probability constraints together
with entropy maximization define a sub-manifold of SU(3) regarded as a sub-manifold in 9-D
complex space. The choice (n(u), n(c)) = (4, n), n < 9, does not allow unitary U whereas
(n(u), n(c)) = (5, 6) does. This choice is still consistent with top quark mass and together
with n(d) = n(s) = 5 it leads to a rather reasonable CKM matrix with a value of CP breaking
invariant within experimental limits. The elements Vi3 and V3i, i = 1, 2 are however roughly
twice larger than their experimental values deduced assuming standard model. V31 is too large
by a factor 1.6. The possibility of scaled up variants of light quarks could lead to too small
experimental estimates for these matrix elements. The whole parameter space has not been
scanned so that better candidates for CKM matrices might well exist.

2. Higgs contribution to fermion masses is negligible

There are good reasons to believe that Higgs expectation for the fermionic space-time
sheets is vanishing although fermions couple to Higgs. Thus p-adic thermodynamics would
explain fermion masses completely. This together with the fact that the prediction of the
model for the top quark mass is consistent with the most recent limits on it, fixes the CP2

mass scale with a high accuracy to the maximal one obtained if second order contribution to
electron’s p-adic mass squared vanishes. This is very strong constraint on the model.

3. The p-adic length scale of quark is dynamical

The assumption about the presence of scaled up variants of light quarks in light hadrons
leads to a surprisingly successful model for pseudo scalar meson masses using only quark masses
and the assumption mass squared is additive for quarks with same p-adic length scale and
mass for quarks labelled by different primes p. This conforms with the idea that pseudo scalar
mesons are Goldstone bosons in the sense that color Coulombic and magnetic contributions
to the mass cancel each other. Also the mass differences between hadrons containing different
numbers of strange and heavy quarks can be understood if s, b and c quarks appear as several
scaled up versions.

This hypothesis yields surprisingly good fit for meson masses but for some mesons the
predicted mass is slightly too high. The reduction of CP2 mass scale to cure the situation is
not possible since top quark mass would become too low. In case of diagonal mesons for which
quarks correspond to same p-adic prime, quark contribution to mass squared can be reduced
by ordinary color interactions and in the case of non-diagonal mesons one can require that
quark contribution is not larger than meson mass.

4. Super-canonical bosons at hadronic space-time sheet can explain the constant contribu-
tion to baryonic masses

4



Quarks explain only a small fraction of the baryon mass and that there is an additional
contribution which in a good approximation does not depend on baryon. This contribution
should correspond to the non-perturbative aspects of QCD.

A possible identification of this contribution is in terms of super-canonical gluons predicted
by TGD. Baryonic space-time sheet with k = 107 would contain a many-particle state of super-
canonical gluons with net conformal weight of 16 units. This leads to a model of baryons masses
in which masses are predicted with an accuracy better than 1 per cent. Super-canonical gluons
also provide a possible solution to the spin puzzle of proton.

Hadronic string model provides a phenomenological description of non-perturbative aspects
of QCD and a connection with the hadronic string model indeed emerges. Hadronic string
tension is predicted correctly from the additivity of mass squared for J = 2 bound states of
super-canonical quanta. If the topological mixing for super-canonical bosons is equal to that
for U type quarks then a 3-particle state formed by 2 super-canonical quanta from the first
generation and 1 quantum from the second generation would define baryonic ground state
with 16 units of conformal weight.

In the case of mesons pion could contain super-canonical boson of first generation prevent-
ing the large negative contribution of the color magnetic spin-spin interaction to make pion
a tachyon. For heavier bosons super-canonical boson need not to be assumed. The preferred
role of pion would relate to the fact that its mass scale is below QCD Λ.

5. Description of color magnetic spin-spin splitting in terms of conformal weight

What remains to be understood are the contributions of color Coulombic and magnetic
interactions to the mass squared. There are contributions coming from both ordinary gluons
and super-canonical gluons and the latter is expected to dominate by the large value of color
coupling strength.

Conformal weight replaces energy as the basic variable but group theoretical structure of
color magnetic contribution to the conformal weight associated with hadronic space-time sheet
(k = 107) is same as in case of energy. The predictions for the masses of mesons are not so
good than for baryons, and one might criticize the application of the format of perturbative
QCD in an essentially non-perturbative situation.

The comparison of the super-canonical conformal weights associated with spin 0 and spin 1
states and spin 1/2 and spin 3/2 states shows that the different masses of these states could be
understood in terms of the super-canonical particle contents of the state correlating with the
total quark spin. The resulting model allows excellent predictions also for the meson masses
and implies that only pion and kaon can be regarded as Goldstone boson like states. The
model based on spin-spin splittings is consistent with the model.

To sum up, the model provides an excellent understanding of baryon and meson masses.
This success is highly non-trivial since the fit involves only the integers characterizing the p-
adic length scales of quarks and the integers characterizing color magnetic spin-spin splitting
plus p-adic thermodynamics and topological mixing for super-canonical gluons. The next
challenge would be to predict the correlation of hadron spin with super-canonical particle
content in case of long-lived hadrons.

1 Introduction

In this chapter the results of the calculation of elementary particle masses will be used to construct
a model predicting hadron masses. The new elements are a revised identification for the p-adic
length scales of quarks and the realization that number theoretical constraints on topological mixing
can be realized by assuming that topological mixing leads to a thermodynamical equilibrium. This
gives an upper bound of 1200 for the number of different U and D matrices and the input from top
quark mass and π+−π0 mass difference implies that physical U and D matrices can be constructed
as small perturbations of matrices expressible as a direct sum of essentially unique 2× 2 and 1× 1
matrices.
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The assumption about the presence of scaled up variants of light quarks in light hadrons leads to
a surprisingly successful model for pseudo scalar meson masses in terms of only quark masses. This
conforms with the idea that at least light pseudo scalar mesons are Goldstone bosons in the sense
that color Coulombic and magnetic contributions to the mass cancel each other. Also the mass
differences between baryons containing different numbers of strange quarks can be understood if s
quark appears as three scaled up versions. The earlier model for the purely hadronic contributions
to hadron masses simplifies dramatically and only the color Coulombic and magnetic contributions
to color conformal weight are needed.

1.1 Construction of U and D matrices

The basic constraint on the topological mixing that the modular contributions to the conformal
weight defining the mass squared remain integer valued in the proper units: if this condition
does not hold true, the order of magnitude for the real counterpart of the p-adic mass squared
corresponds to 10−4 Planck masses.

Number theory gives strong constraints on CKM matrix. p-Adicization requires that U and D
matrix elements are algebraic numbers. A strong constraint would be that the mixing probabilities
are rational numbers implying that matrices defined by the moduli of U and D involve only square
roots of rationals. The phases of matrix elements should belong to a finite extension of complex
rationals.

Little can be said about the details of the dynamics of topological mixing. Nothing however
prevents for constructing a thermodynamical model for the mixing. A thermodynamical model
for U and D matrices maximizing the entropy defined by the mixing probabilities subject to the
constraints fixing the values of nqi and the sums of row/column probabilities to one gives a ther-
modynamical ensemble with two quantized temperatures and two quantized chemical potentials.
The resulting polynomial equations allow at most 1200 different solutions so that the number of U
and D matrices is relatively small. The fact that matrix elements are algebraic numbers guarantees
that the matrices are continuable to p-adic number fields as required.

The detailed study of quark mass spectrum leads to a tentative identification (nd, ns, nb) =
(5, 5, 59) and (nu, nc, nt) = (5, 6, 58) of the modular contributions of conformal weights of quarks:
note that in absence of mixing the contributions would be (0, 9, 60) for both U and D type quarks.
That b and t quark masses are nearly maximal and thus mix very little with lighter quarks is forced
by the masses of t quark and tt meson. The values of nqi for light quarks follow by considering
π+ − π0 mass difference.

One might consider the possibility that nqi for slightly dynamical and can vary in light mesons
in order to guarantee that uu, dd and ss give identical modular contributions to the conformal
weight in states which are linear combinations of quark pairs. It turns out that unitarity does
not allow the choices (n1 = 4, n2 < 9), and that the choice (nd, ns) = (5, 5), (nu, nc) = (5, 6) is
the unique choice producing a realistic CKM matrix. The requirement that quark contribution to
pseudo scalar meson mass is smaller than meson mass is possible to satisfy and gives a constraint
on CP2 mass scale consistent with the prediction of leptonic masses when second order p-adic
contribution to lepton mass is allowed to be non-vanishing.

The small mixing with b and t quarks is natural since the modular conformal weight of unmixed
state having spectrum {0, 9, 60} is analogous to energy so that Boltzmann weight for n(g = 3)
thermal excitation is small for g = 1, 2 ground states.

The maximally entropic solutions can be found numerically by using the fact that only the
probabilities p11 and p21 can be varied freely. The solutions are unique in the accuracy used,
which suggests that the system allows only single thermodynamical phase.

The matrices U and D associated with the probability matrices can be deduced straightfor-
wardly in the standard gauge. The U and D matrices derived from the probabilities determined
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by the entropy maximization turn out to be unitary for most values of n1 and n2. This is a
highly non-trivial result and means that mass and probability constraints together with entropy
maximization define a sub-manifold of SU(3) regarded as a sub-manifold in 9-D complex space.
The choice (nu, nc) = (4, n), n < 9, does not allow unitary U whereas (nu, nc) = (5, 6) does. This
choice is still consistent with top quark mass and together with nd = ns = 5 it leads to a rather
reasonable CKM matrix with a value of CP breaking invariant within experimental limits. The
elements Vi3 and V3i, i = 1, 2 are however roughly twice larger than their experimental values
deduced assuming standard model. V31 is too large by a factor 1.6. The possibility of scaled up
variants of light quarks could lead to too small experimental estimates for these matrix elements.
The whole parameter space has not been scanned so that better candidates for CKM matrices
might well exist.

1.2 Observations crucial for the model of hadron masses

The evolution of the model for hadron masses involves several key observations made during the
more decade that I have been working with p-adic mass calculations.

1.2.1 The p-adic mass scales of quarks are dynamical

The existence of scaled up variants of quarks is suggested by various anomalies such as Aleph
anomaly [50] and the strange bumpy structure of the distribution of the mass of the top quark
candidate. This leads to the idea that the the integer k(q) characterizing the p-adic mass scale of
quark is different for free quarks and bound quarks and that k(q) can depend on hadron. Hence
one can understand not only the notions of current quark mass and constituent quark mass but
reproduce also the p-adic counterpart of Gell-Mann-Okubo mass formula. Indeed, the assumption
about scaled up variants of u, d, s, and even c quarks in light hadrons leads to an excellent fit of
meson masses with quark contribution explaining almost all of meson mass.

1.2.2 Quarks give dominating contribution to the masses of pseudoscalar mesons

The interpretation is that color Coulombic and color magnetic interaction conformal weights
(rather than interaction energies) cancel each other in a approximation for pseudoscalar mesons
in accordance with the idea that pseudo scalar mesons are massless as far as color interactions are
considered. In the case of baryons the assumption that s quark appears in three different scaled up
versions (which are Λ, {Σ,Ξ}, and Ω) allows to understand the mass differences between baryons
with different s quark content. The dominating contribution to baryon mass has however remained
hitherto unidentified.

1.2.3 Higgs contribution to fermion masses is negligible

There are good reasons to believe that Higgs expectation for the fermionic space-time sheets is
vanishing although fermions couple to Higgs. Thus p-adic thermodynamics would explain fermion
masses completely. This together with the fact that the prediction of the model for the top
quark mass is consistent with the most recent limits on it [58], fixes the CP2 mass scale with a
high accuracy to the maximal one obtained if second order contribution to electron’s p-adic mass
squared vanishes. This is very valuable constraint on the model.

1.2.4 Conformal weights are additive for quarks with same p-adic prime

An essential element of the new understanding is that conformal weight (mass squared is additive)
for quarks with the same p-adic length scale whereas mass is additive for quarks with different
values of p. For instance, the masses of heavy qq mesons are equal to

√
2×m(q) rather than 2m(q).
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Since k = 107 for hadronic space-time sheet, for quarks with k(q) 6= 107, additivity holds true for
the quark and color contributions for mass rather than mass squared.

This hypothesis yields surprisingly good fit for meson masses but for some mesons the pre-
dicted mass is slightly too high. The reduction of CP2 mass scale to cure the situation is not
possible since top quark mass would become too low. In case of diagonal mesons for which quarks
correspond to same p-adic prime, quark contribution to mass squared can be reduced by ordinary
color interactions and in case of non-diagonal mesons one can require that quark contribution is
not larger than meson mass.

1.2.5 A remark about terminology

Before continuing a remark about terminology is in order.

1. In the generalized coset construction the symplectic algebra of δM4
± × CP2 and Super-Kac

Moody algebras at light-like partonic surfaces X3 are lifted to hyper-complex algebras inside
the causal diamond of M4 × CP2 carrying the zero energy states. SKM is identified as a
sub-algebra of SC and the differences of SC and SKM Super-Virasoro generators annihilate
the physical states. All purely geometric contributions and their super-counterparts can be
regarded as SC contributions. The fermionic contributions in electro-weak and spin degrees
of freedom responsible also for color partial waves are trivially one and same. One could say
that there is no other contribution than SC which can be however divided into a contribution
from imbedded SKM subalgebra and a genuine SC contribution.

2. In the coset construction a tachyonic ground state of negative SC conformal weight from
which SKM generators create massless states must have a negative conformal weight also in
SKM sense. Therefore the earlier idea that genuine SC generators create the ground states
with a negative conformal weight assignable to elementary particles does not work anymore:
the negative conformal weight must be due to SKM generators with conformal weight which
is most naturally of form h = −1/2 + iy.

3. Super-canonical contribution with a positive conformal weight can be regarded also as a
product of genuine SC contribution with a vanishing conformal weight and a contribution
having also interpretation as SKM contribution. What motivates the term ”super-canonical
bosons” used in the sequel is that in a non-perturbative situation this contribution is most
naturally calculated by regarding it as a super-canonical contribution. This contribution is
highly constrained since it comes solely from generators which are color octets and singlets
have spin one or spin zero. Genuine SC contribution with a zero conformal weight comes from
the products of super-Hamiltonians in higher representations of SU(3) × SO(3) containing
both positive and negative conformal weights compensating each other. This contribution
must have vanishing color quantum numbers and spin since otherwise Dirac operators of H
in SKM and SC degrees of freedom could not act on it in the same manner. Note that
gluons do not correspond to SKM generators but to pairs of quark and antiquark at throats
of a wormhole contact.

1.2.6 Super-canonical bosons at hadronic space-time sheet can explain the constant
contribution to baryonic masses

Quarks explain only a small fraction of the baryon mass and that there is an additional contribution
which in a good approximation does not depend on baryon. This contribution should correspond
to the non-perturbative aspects of QCD.

A possible identification of this contribution is in terms of super-canonical gluons predicted
by TGD. Baryonic space-time sheet with k = 107 would contain a many-particle state of super-
canonical gluons with net conformal weight of 16 units. This leads to a model of baryons masses
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in which masses are predicted with an accuracy better than 1 per cent. Super-canonical gluons
also provide a possible solution to the spin puzzle of proton.

Hadronic string model provides a phenomenological description of non-perturbative aspects of
QCD and a connection with the hadronic string model indeed emerges. Hadronic string tension is
predicted correctly from the additivity of mass squared for J = 2 bound states of super-canonical
quanta. If the topological mixing for super-canonical bosons is equal to that for U type quarks
then a 3-particle state formed by 2 super-canonical quanta from the first generation and 1 quantum
from the second generation would define baryonic ground state with 16 units of conformal weight.

In the case of mesons pion could contain super-canonical boson of first generation preventing
the large negative contribution of the color magnetic spin-spin interaction to make pion a tachyon.
For heavier bosons super-canonical boson is not absolutely necessary but a very precise prediction
for hadron masses results by assuming that the spin of hadron correlates with its super-canonical
particle content.

1.2.7 Color magnetic spin-spin splitting formulated in terms of conformal weight

What remains to be understood are the contributions of color Coulombic and magnetic interactions
to the mass squared. There are several delicate points to be taken into account.

1. The QCD based formula for the color magnetic interaction energy fails completely since the
dependence of color magnetic spin-spin splittings on quark mass scale is nearer to logarithmic
dependence on p-adic length scale than being of form 1/m(qi)m(qj) ∝ L(ki)L(kj). This
finding supports the decade old idea that the proper notion is not color interaction energy
but color conformal weight. A model based on this assumption is constructed assuming that
all pseudoscalars are Goldstone boson like states. The predictions for the masses of mesons
are not so good than for baryons, and one might criticize the application of the format of
perturbative QCD in an essentially non-perturbative situation.

2. The comparison of the super-canonical conformal weights associated with spin 0 and spin 1
states and spin 1/2 and spin 3/2 states shows that the different masses of these states could
be understood in terms of the super-canonical particle contents of the state correlating with
the total quark spin. The resulting model allows excellent predictions also for the meson
masses and implies that only pion and kaon can be regarded as Goldstone boson like states.
The model based on spin-spin splittings is consistent with the model.

To sum up, the model provides an excellent understanding of baryon and meson masses. This
success is highly non-trivial since the fit involves only the integers characterizing the p-adic length
scales of quarks and the integers characterizing color magnetic spin-spin splitting plus p-adic
thermodynamics and topological mixing for super-canonical gluons. The next challenge would
be to predict the correlation of hadron spin with super-canonical particle content in the case of
long-lived hadrons.

1.3 A possible model for hadron

These findings suggest that the following model for hadrons deserves a testing. Hadron can be
characterized in terms of k ≥ 113 partonic 2-surfaces X2(qi) connected by join along boundaries
bonds (JABs, flux tubes) to k = 107 2-surface X2(H) corresponding to hadron. These flux tubes
which for k = 113 have size much larger than hadron can be regarded as ”field bodies” of quarks
which themselves have sub-hadronic size. Color flux tubes between quarks are replaced with
pairs of flux tubes from X2(q1)) → X2(H) → X2(q2) mediating color Coulombic and magnetic
interactions between quarks. In contrast to the standard model, mesons are characterized by two
flux tubes rather than only one flux tube. Certainly this model gives nice predictions for hadron
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masses and even the large color Coulombic contribution to baryon masses can be deduced from
ρ− π mass splitting in a good approximation.

2 Quark masses

The prediction or quark masses is more difficult due the facts that the deduction of even the
p-adic length scale determining the masses of these quarks is a non-trivial task, and the original
identification was indeed wrong. Second difficulty is related to the topological mixing of quarks.
The new scenario leads to a unique identification of masses with top quark mass as an empirical
input and the thermodynamical model of topological mixing as a new theoretical input. Also CKM
matrix is predicted highly uniquely.

2.1 Basic mass formulas

By the earlier mass calculations and construction of CKM matrix the ground state conformal
weights of U and D type quarks must be hgr(U) = −1 and hgr(D) = 0. The formulas for the
eigenvalues of CP2 spinor Laplacian imply that if m2

0 is used as a unit, color conformal weight
hc ≡ m2

CP2
is integer for p mod = ±1 for U type quark belonging to (p + 1, p) type representation

and obeying hc(U) = (p2 + 3p + 2)/3 and for p mod 3 = 1 for D type quark belonging (p, p + 2)
type representation and obeying hc(D) = (p2 + 4p + 4)/3. Only these states can be massless since
color Hamiltonians have integer valued conformal weights.

In the recent case the minimal p = 1 states correspond to hc(U) = 2 and hc(D) = 3. hgr(U) =
−1 and hgr(D) = 0 reproduce the previous results for quark masses required by the construction
of CKM matrix. This requires super-canonical operators O with a net conformal weight hsc = −3
to compensate the anomalous color just as in the leptonic case. The facts that the values of p
are minimal for spinor harmonics and the super-canonical operator is same for both quarks and
leptons suggest that the construction is not had hoc.

Consider now the mass squared values for quarks. For h(D) = 0 and h(U) = −1 and using
m2

0/3 as a unit the expression for the thermal contribution to the mass squared of quark is given
by the formula

M2 = (s + X)
m2

0

p
,

s(U) = 5 , s(D) = 8 ,

X ≡ (3Y p)R

3
, (1)

where the second order contribution Y corresponds to renormalization effects coming and depend-
ing on the isospin of the quark.

With the above described assumptions one has the following mass formula for quarks

M2(q) = A(q) m2
0

p(q) ,

A(u) = 5 + XU (p(u) , A(c) = 14 + XU (p(c)) , A(t) = 65 + XU (p(t)) ,
A(d) = 8 + XD(p(d)) , A(s) = 17 + XD(p(s)) , A(b) = 68 + XD(p(b)) .

(2)

p-Adic length scale hypothesis allows to identify the p-adic primes labelling quarks whereas
topological mixing of U and D quarks allows to deduce topological mixing matrices U and D and
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CKM matrix V and precise values of the masses apart from effects like color magnetic spin orbit
splitting, color Coulombic energy, etc..

Integers nqi
satisfying

∑
i n(Ui) =

∑
i n(Di) = 69 characterize the masses of the quarks and

also the topological mixing to high degree. The reason that modular contributions remain integers
is that in the p-adic context non-trivial rationals would give CP2 mass scale for the real counterpart
of the mass squared. In the absence of mixing the values of integers are nd = nu = 0, ns = nc = 9,
nb = nt = 60.

The fact that CKM matrix V expressible as a product V = U†D of topological mixing matrices
is near to a direct sum of 2 × 2 unit matrix and 1 × 1 unit matrix motivates the approximation
nb ' nt.

The model for topological mixing matrices and CKM matrix predicts U and D matrices highly
uniquely and allows to understand quark and hadron masses in surprisingly detailed level.

The large masses of top quark and of tt meson encourage to consider a scenario in which
nt = nb = n ≤ 60 holds true.

1. nd = nu = 60 is not allowed by number theoretical conditions for U and D matrices and by
the basic facts about CKM matrix but nt = nb = 59 allows almost maximal masses for b and
t. This is not yet a complete hit. The unitarity of the mixing matrices and the construction
of CKM matrix to be discussed in the next section forces the assignments

(nd, ns, nb) = (5, 5, 59) , (nu, nc, nt) = (5, 6, 58) . (3)

fixing completely the quark masses apart from a possible few per cent renormalization effects
of hadronic mass scale in topological condensation which seem to be present and will be
discussed later 1. Note that top quark mass is still rather near to its maximal value.

2. The constraint that quark contribution to pion mass does not exceed pion mass implies
the constraint n(d) ≤ 6 and n(u) ≤ 6 in accordance with the predictions of the model of
topological mixing. It is important to notices that u−d mass difference does not affect π+−π0

mass difference and the quark contribution to m(π) is predicted to be
√

(nd + nu + 13)/24×
136.9 MeV for the maximal value of CP2 mass (second order p-adic contribution to electron
mass squared vanishes).

2.1.1 The p-adic length scales associated with quarks and quark masses

The identification of p-adic length scales associated with the quarks has turned to be a highly
non-trivial problem. The reasons are that for light quarks it is difficult to deduce information
about quark masses for hadron masses and that the unknown details of the topological mixing
(unknown until the advent of the thermodynamical model) made possible several p-adic length
scales for quarks. It has also become clear that the p-adic length scale can be different form free
quark and bound quark and that bound quark p-adic scale can depend on hadron.

Two natural constraints have however emerged from the recent work.

1. Quark contribution to the hadron mass cannot be larger than color contribution and for
quarks having kq 6= 107 quark contribution to mass is added to color contribution to the
mass. For quarks with same value of k conformal weight rather than mass is additive whereas
for quarks with different value of k masses are additive. An important implication is that for
diagonal mesons M = qq having k(q) 6= 107 the condition m(M) ≥ √

2mq must hold true.
This gives strong constraints on quark masses.

1As this was written I had not realized that there is also a Higgs contribution which tends to increase top quark
mass
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2. The realization that scaled up variants of quarks explain elegantly the masses of light hadrons
allows to understand large mass splittings of light hadrons without the introduction of strong
isospin-isospin interaction.

The new model for quark masses is based on the following identifications of the p-adic length
scales.

1. The nuclear p-adic length scale L(k), k = 113, corresponds to the p-adic length scale de-
termining the masses of u, d, and s quarks. Note that k = 113 corresponds to a so called
Gaussian Mersenne. The interpretation is that quark massivation occurs at nuclear space-
time sheet at which quarks feed their em fluxes. At k = 107 space-time sheet, where quarks
feed their color gauge fluxes, the quark masses are vanishing in the first p-adic order. This
could be due to the fact that the p-adic temperature is Tp = 1/2 at this space-time sheet so
that the thermal contribution to the mass squared is negligible. This would reflect the fact
that color interactions do not involve any counterpart of Higgs mechanism.

p-Adic mass calculations turn out to work remarkably well for massive quarks. The reason
could be that M107 hadron physics means that all quarks feed their color gauge fluxes to
k = 107 space-time sheets so that color contribution to the masses becomes negligible for
heavy quarks as compared to Super-Kac Moody and modular contributions corresponding
to em gauge flux feeded to k > 107 space-time sheets in case of heavy quarks. Note that Z0

gauge flux is feeded to space-time sheets at which neutrinos reside and screen the flux and
their size corresponds to the neutrino mass scale. This picture might throw some light to
the question of whether and how it might be possible to demonstrate the existence of M89

hadron physics.

One might argue that k = 107 is not allowed as a condensation level in accordance with
the idea that color and electro-weak gauge fluxes cannot be feeded at the space-time space
time sheet since the classical color and electro-weak fields are functionally independent. The
identification of η′ meson as a bound state of scaled up k = 107 quarks is not however
consistent with this idea unless one assumes that k = 107 space-time sheets in question are
separate.

2. The requirement that the masses of diagonal pseudoscalar mesons of type M = qq are larger
but as near as possible to the quark contribution

√
2mq to the valence quark mass, fixes the

p-adic primes p ' 2k associated with c, b quarks but not t since toponium does not exist.
These values of k are ”nominal” since k seems to be dynamical. c quark corresponds to the
p-adic length scale k(c) = 104 = 23 × 13. b quark corresponds to k(b) = 103 for n(b) = 5.
Direct determination of p-adic scale from top quark mass gives k(t) = 94 = 2 × 47 so that
secondary p-adic length scale is in question.

3. Top quark is experimentally in a unique position since toponium does not exist and top quark
mass is that of free top. The prediction for top quark mass (see Table 1 below) is 167.8 GeV
for Yt = Ye = 0 (second order contributions to mass vanish) and 169.1 GeV for Yt = 1 and
Ye = 0 (maximal possible mass for top). The experimental estimate for mt remained for a
long time somewhat higher than the prediction but the estimates have gradually reduced.
The previous experimental average value was m(t) = 169.1 GeV with the allowed range being
[164.7, 175.5] GeV [58, 61]. The fine tuning Ye = 0, Yt = 1 giving 169.1 GeV is somewhat
un-natural. The most recent value obtained by CDF and discussed in detail by Tommaso
Dorigo [60] is mt = 165.1 ± 3.3± 3.1 GeV. This is value is consistent with the lower bound
predicted by TGD for Ye = Yt = 0 and increase of Yt increases the value of the predicted
mass. Clearly, TGD passes the stringent test posed by top quark.
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4. There are good reasons to believe that the p-adic mass scale of quark is different for free quark
and bound state quark and that in case of bound quark it can also depend on hadron. This
would explain the notions of valence (constituent) quark and current quark mass as masses of
bound state quark and free quark and leads also to a TGD counterpart of Gell-Mann-Okubo
mass formula.

1. Constituent quark masses

Constituent quark masses correspond to masses derived assuming that they are bound to
hadrons. If the value of k is assumed to depend on hadron one obtains nice mass formula for
light hadrons as will be found later. The following table summarizes constituent quark masses
labelled by kq deduced from the masses of diagonal mesons.

q d u s c b t
nq 4 5 6 6 59 58
sq 12 10 14 11 67 63

k(q) 113 113 113 104 103 94
m(q)/GeV .105 .0923 .105 2.191 7.647 167.8

Table 1. Constituent quark masses predicted for diagonal mesons assuming (nd, ns, nb) =
(5, 5, 59) and (nu, nc, nt) = (5, 6, 58), maximal CP2 mass scale(Ye = 0), and vanishing of second
order contributions.

2. Current quark masses

Current quark masses would correspond to masses of free quarks which tend to be lower than
valence quark masses. Hence k could be larger in the case of light quarks. The table of quark
masses in Wikipedia [61] gives the value ranges for current quark masses depicted in the table
below together with TGD predictions for the spectrum of current quark masses.

q d u s
m(q)exp/MeV 4-8 1.5-4 80-130

k(q) (122,121,120) (125,124,123,122) (114,113,112)
m(q)/MeV (4.5,6.6,9.3) (1.4,2.0,2.9,4.1) (74,105,149)

q c b t
m(q)exp/MeV 1150-1350 4100-4400 1691

k(q) (106,105) (105,104) 92
m(q)/MeV (1045,1477) (3823,5407) 167.8

Table 2. The experimental value ranges for current quark masses [61] and TGD predictions
for their values assuming (nd, ns, nb) = (5, 5, 59), (nu, nc, nt) = (5, 6, 58), Ye = 0, and vanishing of
second order contributions.

Some comments are in order.

1. The long p-adic length associated with light quarks seem to be in conflict with the idea that
quarks have sizes smaller than hadron size. The paradox disappears when one realized that
k(q) characterizes the electromagnetic ”field body” of quark having much larger size than
hadron.

2. u and d current quarks correspond to a mass scale not much higher than that of elec-
tron and the ranges for mass estimates suggest that u could correspond to scales k(u) ∈
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(125, 124, 123, 122) = (53, 4 × 31, 3 × 41, 2 × 61), whereas d would correspond to k(d) ∈
(122, 121, 120) = (2× 61, 112, 3× 5× 8).

3. The TGD based model for nuclei based on the notion of nuclear string leads to the conclusion
that exotic copies of k = 113 quarks having k = 127 are present in nuclei and are responsible
for the color binding of nuclei [F8, F9].

4. The predicted values for c and b masses are slightly too low for (k(c), k(b)) = (106, 105) =
(2× 53, 3× 5× 7). Second order Higgs contribution could increase the c mass into the range
given in [61] but not that of b.

2.1.2 Can Higgs field develop a vacuum expectation in fermionic sector at all?

An important conclusion following from the calculation of lepton and quark masses is that if Higgs
contribution is present, it can be of second order p-adically and even negligible, perhaps even
vanishing. There is indeed an argument forcing to consider this possibility seriously. The recent
view about elementary particles is following.

1. Fermions correspond to CP2 type vacuum extremals topologically condensed at positive/negative
energy space-time sheets carrying quantum numbers at light-like wormhole throat. Higgs and
gauge bosons correspond to wormhole contacts connecting positive and negative energy space-
time sheets and carrying fermion and anti-fermion quantum numbers at the two light-like
wormhole throats.

2. If the values of p-adic temperature are Tp = 1 and Tp = 1/26 for fermions and bosons, one
can understand relate both the value of the Kähler coupling strength and p-adic temperature
to the integer valued parameter k characterizing Chern-Simons action defining partonic dy-
namics as almost topological QFT [C2]. The basic implication is that the thermodynamical
contribution to the gauge boson mass is completely negligible.

3. Different p-adic temperatures and Kähler coupling strengths for fermions and bosons make
sense if bosonic and fermionic partonic 3-surfaces meet only along their ends at the vertices
of generalized Feynman diagrams but have no other common points [C2]. This forces to
consider the possibility that fermions cannot develop Higgs vacuum expectation value al-
though they can couple to Higgs. This is not in contradiction with the modification of sigma
model of hadrons based on the assumption that vacuum expectation of σ field gives a small
contribution to hadron mass [F5] since this field can be assigned to some bosonic space-time
sheet pair associated with hadron.

2.2 Are scaled up variants of quarks also there?

The following arguments suggest that p-adically scaled up variants of quarks might appear not
only at very high energies but even in low energy hadron physics.

2.2.1 Aleph anomaly and scaled up copy of b quark

The prediction for the b quark mass is consistent with the explanation of the Aleph anomaly [50]
inspired by the finding that neutrinos seem to condense at several p-adic length scales [54]. If b
quark condenses at k(b) = 97 level, the predicted mass is m(b, 97) = 52.3 GeV for nb = 59 for the
maximal CP2 mass consistent with η′ mass. If the the mass of the particle candidate is defined
experimentally as one half of the mass of resonance, b quark mass is actually by a factor

√
2 higher

and scaled up b corresponds to k(b) = 96 = 25 × 3. The prediction is consistent with the estimate
55 GeV for the mass of the Aleph particle and gives additional support for the model of topological
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mixing. Also the decay characteristics of Aleph particle are consistent with the interpretation as
a scaled up b quark.

2.2.2 Scaled variants of top quark

Tony Smith has emphasized the fact that the distribution for the mass of the top quark candidate
has a clear structure suggesting the existence of several states, which he interprets as excited states
of top quark [53]. According to the figures 2.2.2 and 2.2.2 representing published FermiLab data,
this structure is indeed clearly visible.

Figure 1: Fermilab semileptonic histogram for the distribution of the mass of top quark candidate
(FERMILAB-PUB-94/097-E).

There is evidence for a sharp peak in the mass distribution of the top quark in 140-150 GeV
range (Fig. 2.2.2). There is also a peak slightly below 120 GeV, which could correspond to a
p-adically scaled down variant t quark with k = 95 having mass 119.6 GeV for (Ye = 0, Yt = 1)
There is also a small peak also around 265 GeV which could relate to m(t(93)) = 240.4 GeV.
There top could appear at least for the p-adic scales k = 93, 94, 95 as also u and d quarks seem to
appear as current quarks.

2.2.3 Scaled up variants of d, s, u, c in top quark mass scale

The fact that all neutrinos seem to appear as scaled up versions in several scales, encourages to
look whether also u, d, s, and c could appear as scaled up variants transforming to the more stable
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Figure 2: Fermilab D0 semileptonic histogram for the distribution of the mass of top quark candi-
date (hep-ex/9703008, April 26, 1994

variants by a stepwise increase of the size scale involving the emission of electro-weak gauge bosons.
In the following the scenario in which t and b quarks mix minimally is considered.

q m(92)/GeV m(91)/GeV m(90)/GeV
u 134 189 267
d 152 216 304
c 140 198 280
s 152 216 304

Table 3. The masses of k = 92, 91 and k = 90 scaled up variants of u,d,c,s quarks assuming
same integers nqi as for ordinary quarks in the scenario (nd, ns, nb) = (5, 5, 59) and (nu, nc, nt) =
(5, 6, 58) and maximal CP2 mass consistent with the η′ mass.

1. For k = 92, the masses would be m(q, 92) =134,140,152,152 GeV in the order q= u,c,d,s so
that all these quarks might appear in the critical region where the top quark mass has been
wandering.

2. For k = 91 copies would have masses m(q, 91) =189, 198, 256, 256 GeV in the order q=
u,c,d,s. The masses of u and c are somewhat above the value of latest estimate 170 GeV for
top quark mass [58].

Note that it is possible to distinguish between scaled up quarks of M107 hadron physics and
the quarks of M89 hadron physics since the unique signature of M89 hadron physics would be the
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increase of the scale of color Coulombic and magnetic energies by a factor of 512. As will be found,
this allows to estimate the masses of corresponding mesons and baryons by a direct scaling. For
instance, M89 pion and nucleon would have masses 71.7 GeV and 481 GeV.

It must be added that the detailed identifications are sensitive to the exact value of the CP2

mass scale. The possibility of at most 2.5 per cent downward scaling of masses occurs is allowed
by the recent value range for top quark mass.

2.2.4 Fractally scaled up copies of light quarks and low mass hadrons?

One can of course ask, whether the fractally scaled up quarks could appear also in low lying
hadrons. The arguments to be developed in detail later suggest that u, d, and s quark masses
could be dynamical in the sense that several fractally scaled up copies can appear in low mass
hadrons and explain the mass differences between hadrons.

In this picture the mass splittings of low lying hadrons with different flavors would result from
fractally scaled up excitations of s and also u and d quarks in case of mesons. This notion would
also throw light into the paradoxical presence of two kinds of quark masses: constituent quark
masses and current quark masses having much smaller values than constituent quarks masses.
That color spin-spin splittings are of same order of magnitude for all mesons supports the view
that color gauge fluxes are feeded to k = 107 space-time sheet.

The alert reader has probably already asked whether also proton mass could be understood in
terms of scaled up copies of u and d quarks. This does not seem to be the case, and an argument
predicting with 23 per cent error proton mass scale from ρ−π and ∆−N color magnetic splittings
emerges.

To sum up, it seems quite possible that the scaled up quarks predicted by TGD have been
observed for decade ago in FermiLab about that the prevailing dogmas has led to their neglect
as statistical fluctuations. Even more, scaled up variants of s quarks might have been in front
of our eyes for half century! Phenomenon is an existing phenomenon only if it is an understood
phenomenon.

3 Topological mixing of quarks

The requirement that hadronic mass spectrum is physical requires mixing of U and D type bound-
ary topologies. In this section quark masses and the mixing of the boundary topologies are con-
sidered on the general level and CKM matrix is derived using the existing empirical information
plus the constraints on the quark masses to be derived from the hadronic mass spectrum in the
later sections.

3.1 Mixing of the boundary topologies

In TGD the different mixings of the boundary topologies for U and D type quarks provide the
fundamental mechanism for CKM mixing and also CP breaking. In the determination of CKM
matrix one can use following conditions.

1. Mass squared expectation values in order O(p) for the topologically mixed states must be
integers and the study of the hadron mass spectrum leads to very stringent conditions on
the values of these integers. Physical values for these integers imply essentially correct value
for Cabibbo angle provided U and D matrices differ only slightly from the mixing matrices
mixing only the two lowest generations.

2. The matrices U and D describing the mixing of U and D type boundary topologies are unitary
in the p-adic sense. The requirement that the moduli squared of the matrix elements are

17



rational numbers, is very attractive since it suggests equivalence of p-adic and real probability
concepts and therefore could solve some conceptual problems related to the transition from
the p-adic to real regime. It must be however immediately added that rationality assumption
for the probabilities defined by S-matrix turns out to be non-physical. It turns out that the
mixing scenario reproducing a physical CKM matrix is consistent with the rationality of the
moduli squared of the matrix elements of U and D matrices but not with the rationality of the
matrix elements themselves. The phase angles appearing in U and D matrix can be rational
and in this case they correspond to Pythagorean triangles. In principle the rationality of the
CKM matrix is possible.

3. The requirements that Cabibbo angle has correct value and that the elements V (t, d) and
V (u, b) of the CKM matrix have small values not larger than 10−2 fixes the integers ni

characterizing quark masses to a very high degree and in a good approximation one can
estimate the angle parameters analytically. remains open at this stage. The requirement of
a realistic CKM matrix leads to a scenario for the values of ni, which seems to be essentially
unique.

The mass squared constraints give for the D matrix the following conditions

9|D12|2 + 60|D13|2 = n1(D) ≡ nd ,

9|D22|2 + 60|D23|2 = n2(D) ≡ ns ,

9|D32|2 + 60|D33|2 = n3(D) ≡ nb = 69− n2(D)− n1(D) .

(4)

The third condition is not independent since the sum of the conditions is identically true by
unitarity.

For U matrix one has similar conditions:

9|U12|2 + 60|U13|2 = n1(U) ≡ nu ,

9|U22|2 + 60|U23|2 = n2(U) ≡ nc ,

9|U32|2 + 60|U33|2 = n3(U) ≡ nt = 69− n2(U)− n1(U) .

(5)

The integers nd, ns and nu, nc characterize the masses of the physical quarks and the task is to
derive the values of these integers by studying the spectrum of the hadronic masses. The second
task is to find unitary mixing matrices satisfying these conditions.

The general form of U and D matrices can be deduced from the standard parametrization of
the CKM matrix given by

V =




c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3exp(iδCP ) c1c2s3 + s2c3exp(iδCP )
−s1s2 c1s2c3 + c2s3exp(iδCP ) c1s2s3 − c2c3exp(iδCP )


 (6)

This form of the CKM matrix is always possible to achieve by multiplying each U and D type quark
fields with a suitable phase factor: this induces a multiplication U and D from left by a diagonal
phase factor matrix inducing the multiplication of the columns of U and D by phase factors:

U → U × d(φ1, φ2, φ3) ,
D → D × d(χ1, χ2, χ3) ,
d(φ1, φ2, φ3) ≡ diag(exp(iφ1), exp(iφ2), exp(iφ3)) .
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The multiplication of the columns by the phase factors affects CKM matrix defined as

V = U†D → d(−φ1,−φ2,−φ3)V d(χ1, χ2), χ3) . (7)

By a suitable choice of the phases, the first row and column of V can be made real. The multipli-
cation of the rows of U and D from the left by the same phase factors does not affect the elements
of V. One can always choose D to be of the same general form as the CKM matrix but must allow
U to have nontrivial phase overall factors on the second and third row so that the most general U
matrix is parameterized by six parameters.

Mass squared conditions give two independent conditions on the values of the moduli of the
matrix elements of U and D. This eliminates two coordinates so that the most general D matrix
can be chosen to depend on 2 parameters, which can be taken to be r11 ≡ |D11| and r21 ≡ |D21|. U
matrix contains also the overall phase angles associated with the second and third row and hence
depends on four parameters altogether.

3.2 The constraints on U and D matrices from quark masses

The new view about quark masses allows a surprisingly simple model for U and D matrices predict-
ing in the lowest order approximation that the probabilities defined by these matrices are identical
and that the integers characterizing the masses of U and D type quarks are identical.

3.2.1 The constraints on |U | and |D| matrices from quark masses

The understanding of quark masses pose strong constraints on U and D matrices. The constraints
are identical in the approximation that V -matrix is identity matrix and read in the case of D-matrix
as

nd = 13 = PD
12 × 9 + PD

13 × 60 ,

ns = 31 = PD
22 × 9 + PD

23 × 60 . (8)

The conditions for b quark give nothing new. The extreme cases when only g = 1 or g = 2
contributes to nq gives the bounds

15
36

≤ PD
13 ≤

15
60

,

22
60

≤ PD
23 ≤

31
60

. (9)

3.2.2 Unitarity conditions

The condition D = V U and the fact that V is in not too far from unit matrix being in a good
approximation a direct sum of 2 × 2 matrix and 1 × 1 identity matrix, imply together that U an
D cannot differ much from each other. At least the probabilities defined by the moduli squared of
matrix elements are near to each other.

1. Instead of trying numerically to solve U and D matrices by a direct numerical search, it is
more appropriate to try to deduce estimates for the probabilities PU

ij = |Uij |2 and PD
ij =

|Dij |2 determined by the moduli squared of the matrix elements and satisfying the unitarity
conditions

∑
j PX

ij = 1 and
∑

i PX
ij = 1.
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2. The formula D = UV using the fact that Vi3 is small for i = 1, 2 implies |Di3| ' |Ui3|. By
probability conservation also the condition |D33| ' |U33| must hold true so that the third
columns of U and D are same in a reasonable approximation.

1. Parametrization of |U | and |D| matrices

The following parametrization is natural for the matrices PX
ij .

PD
12 = kD

9 , PD
13 = nd−kD

9 ,

PD
22 = lD

9 , PD
23 = ns−lD

60 ,

PD
32 = 9−kD−lD

9 , PD
33 = 60−ns−nd−kD−lD

60 .

(10)

A similar parametrization holds true for PU
ij but with nd = nu and ns = nc but possibly different

values of kU and lU . Since lD ¿ ns is expected to hold true, PD
23 is in a good approximation equal

to PD
23 = ns/60 = 31/60. Same applies to PU

23.
kX = 2 (kX need not be an integer) gives a good first estimate for mixing probabilities of u

and d quark. Thus only the parameter lX remains free if kD = 2 is accepted.
The approximation PU

i3 = PD
i3 motivated by the near unit matrix property of V , gives the

parametrization

PD
12 = PU

12 =
k

9
, PD

13 = PU
13

nd − k

60
. (11)

2. Constraints from CKM matrix in |U | = |D| approximation

The condition D12 = (UV )12 when feeded to the condition

PU
12 = PD

12 (12)

using the approximation kD = kU = k lD = lU = l gives

|Ui2|2 − |Ui1V12 + Ui2V22 + Ui3V32|2 = 0 . (13)

i = 1, 2, 3 In the approximation that the small V32 term does not contribute, this gives

|Ui1V12 + Ui2V22)|2 = |Ui2|2 . (14)

By dividing with |Ui1|2|V22|2 and using the approximation |V22|2 = 1 this gives

v2
i + 2uivi × cos(Ψi) = 0 ,

Ψi = arg(Vi2)− arg(V32) + arg(Ui1)− arg(Ui2) .

ui = |Ui2

Ui1
| , vi = | Vi2

V22
| . (15)

This gives
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cos(Ψi) = − vi

2ui
= −vi

2

√
9xi

ki
,

xi = PD
ii = 1− ki

9
− n(i)− k(i)

60
,

k(1) = k , k(2) = l , n(1) = nd, n(2) ≡ ns . (16)

The condition |cos(Ψ)| ≤ 1 is trivially satisfied. For nd = 13 and k = 2 the condition gives x = .59
and cos(Ψ1) = .185. k = 1.45 gives x = .65 and cos(Ψ) = .226, which is rather near to V12.

3.3 Constraints from CKM matrix

Besides the constraints from hadron masses, there are constraints from CKM matrix V = U†D on
U and D matrices.

1. The fact that CKM matrix is near unit matrix implies that U and D matrix are near to each
other and the assumption n(Ui) = n(Di) predicting quark masses correctly is consistent with
this.

2. Cabibbo angle allows to derive the estimate for the difference |U11| − |D11|. Together with
other conditions this difference fixes the scenario essentially uniquely.

3. The requirement that CP breaking invariant J has a correct order of magnitude gives a very
strong constraint on D matrix. The smallness of J implies that V is nearly orthogonal matrix
and same assumption can be made about U and D matrices.

4. The requirement that the moduli the first row (column) of CKM matrix are predicted cor-
rectly makes it possible to deduce for given D (U) U (D) matrix essentially uniquely. Unitarity
requirement poses very strong additional constraints. It must be emphasized that the con-
straints from the moduli of the CKM alone are sufficient to determine U and D matrices and
hence also quark masses and hadron masses to very high degree.

1. Bounds on CKM matrix elements

The most recent experimental information [36] concerning CKM matrix elements is summarized
in table below

|V13| ≡ |Vub| = (0.087± 0.075)Vcb : 0.42 · 10−3 < |Vub| < 6.98 · 10−3

|V23| ≡ |Vcb| = (41.2± 4.5) · 10−3

|V31| ≡ |Vtd| = (9.6± 0.9) · 10−3

|V32| ≡ |Vts| = (40.2± 4.4) · 10−3

sCab = 0.226± 0.002

Table 4. The experimental constraints on the absolute values of the CKM matrix elements.

s1 = .226± .002 ,

s1s2 = V31 = (9.6± .9) · 10−3 ,

s1s3 = V13 = (.087± .075) · V23 ,

V23 = (40.2± 4.4) · 10−3 . (17)

21



The remaining parameter is sin(δ) or equivalently the CP breaking parameter J :

J = Im(V11V22V 12V 21) = c1c2c3s2s3s
2
1sin(δ) ,

(18)

where the upper bound is for sin(δ) = 1 and the previous average values of the parameters si, ci

(note that the poor knowledge of s3 affects on the upper bound for J considerably). Unitary
triangle [35] gives for the CP breaking parameter the limits

1.0× 10−4 ≤ J ≤ 1.7× 10−4 . (19)

2. CP breaking in M −M systems as a source of information about CP breaking phase

Information about the value of sin(δ) as well as on the range of possible top quark masses
comes from CP breaking in K − K̄ and B − B̄ systems.

The observables in KL → 2π system [46]

η+− =
A(KL → π+π−)
A(KS → π+π−)

= ε +
ε′

1 + ω/
√

2
,

η00 =
A(KL → π0π0)
A(KS → π0π0)

= ε− 2
ε′

1−√2ω
,

ω ∼ 1
20

,

ε = (2.27± .02) · 10−3 · exp(i43.7o) ,

|ε
′

ε
| = (3.3± 1.1) · 10−3 . (20)

The phases of ε and ε′ are in good approximation identical. CP breaking in K − K̄ mass
matrix comes from the CP breaking imaginary part of s̄d → sd̄ amplitude M12 (via the decay to
intermediate W+W− pair) whereas K0K̄0 mass difference ∆mK comes from the real part of this
amplitude: the calculation of the real part cannot be done reliably for kaon since perturbative
QCD does not work in the energy region in question. On can however relate the real part to the
known mass difference between KL and KS : 2Re(M12) = ∆mK .

Using the results of [46]) one can express ε and ε′/ε in the following numerical form

|ε| =
1√
2

Im(Msd
12 )

∆mK
− .05 · |ε

′

ε
| = 2J(22.2BK ·X(mt)− .28B′

K) ,

|ε
′

ε
| = C · J ·B′

K ,

X(mt) =
H(mt)

H(mt = 60 GeV )
,

H(mt) = −η1F (xc) + η2F (xt)K + η3G(xc, xt) ,

xq =
m(q)2

m2
W

,

K = s2
2 + s2s3cos(δ) . (21)
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Here the values of QCD parameters ηi depend on top mass slightly. B′
K and BK are strong

interaction matrix elements and vary between 1/3 and 1. The functions F and G [46] are given by

F (x) = x

[
1
4

+
9
4

1
1− x

− 3
2

1
(1− x)2

]
+

3
2
(

x

x− 1
)3log(x) ,

G(x, y) = xy

[
1

x− y

[
1
4

+
3
2

1
1− x

− 3
4

1
(1− x)2

]
log(x) + (y → x)− 3

4
1

(1− x)(1− y)

]
.

(22)

One can solve parameter B′
K by requiring that the value of ε′/ε corresponds to the experimental

mean value:

B′
K =

1
C × J

ε′

ε
. (23)

The most recent measurements by KTeV collaboration in Fermi Lab [38] give for the ratio |ε′/ε|
the value |ε′/ε| = (28 ± 1) × 10−4. The proposed standard model explanation for the large value
of B′

K is that s-quark has running mass about ms(mc) ' .1 GeV at mc [57]. The explanation is
marginally consistent with the TGD prediction m(s) = 127 MeV for the mass of s quark. Also
the effects caused by the predicted higher gluon generations having masses around 33 GeV can
increase the value of ε′/ε by a factor 3 in the lowest approximation since the corrections involve
sum over three different one-gluon loop diagrams with gluon mass small respect to intermediate
boson mass scale [F5].

A second source of information comes from B− B̄ mass difference. At the energies in question
perturbative QCD is expected to be applicable for the calculation of the mass difference and mass
difference is predicted correctly if the mass of the top quark is essentially the mass of the observed
top candidate [32].

3. U and D matrices could be nearly orthogonal matrices

The smallness of the CP breaking phase angle δCP means that V is very near to an orthogonal
matrix. This raises the hope that in a suitable gauge also U and D are nearly orthogonal matrices
and would be thus almost determined by single angle parameter θX , X = U,D. Cabibbo angle
sc = sin(θc) = .226 which is not too far from sin2(θW ) ' .23 and appears in V matrix rotating
the rows of U to those of D. In very vague sense this angle would characterize between the
difference of angle parameters characterizing U and D matrices. If U is orthogonal matrix then
the decomposition

V = V1V2 =




c1 s1 0
−s1c2 c1c2 s2exp(iδCP )
−s1s2 c1s2 −c2exp(iδCP )


×




1 0 0
0 c3 s3

0 −s3 c3


 (24)

suggests that CP breaking can be visualized as a process in which first s and b quarks are slightly
mixed to s′ and b′ by V2 (s3 ' 1.4 × 10−2) after which V1 induces a slightly CP-breaking mixing
of d and s′ with b′ (s2 ' .04).

4. How the large mixing between u and c results

The prediction that u quark spends roughly 1/3 of time in g = 0 state looks bizarre and it is
desirable to understand this from basic principles. The basic observations are following.
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1. V matrix is in good approximation direct sum of 2 × 2 matrix inducing relatively large
rotation with sin(θc) ' .23 and unit matrix. In particular, Vi3 are very small for i = 1, 2.
Using the formula D = UV one finds that |Ui3| = |Di3| in a good approximation for i = 1, 2
and by unitarity also for I = 3. Thus the third columns of U and D are identical in a good
approximation.

2. Assume that also Ui3 and Di3 are small for i = 1, 2. A stronger assumption is that even
the contribution of D13 and U13 are so small that they do not affect u and d masses. This
implies

nd = 9|D12|2 + 60|D13|2 ' 9|D12|2 ,

nu ' 9|U12|2 . (25)

Unitarity implies in this approximation

|U11|2 ≤ 1− nu

9
=

1
3

,

|D11|2 ≤ 1− nd

9
=

5
9

. (26)

3. It might be that there are also solutions for which mixing of u resp. d quark is mostly
with t resp. b quarks but numerical experimentation does not favor this idea since CP
breaking becomes extremely small. Since mixing presumably involves topology change, it
seems obvious that topological mixing involving a creation or annihilation of two handles is
improbable.

4 Construction of U , D, and CKM matrices

In this section it will be found that various mathematical and experimental constraints on U and
D matrices determine them essentially uniquely.

4.1 The constraints from CKM matrix and number theoretical condi-
tions

The requirement that U, D and V allow an algebraic continuation to finite-dimensional extensions
of various p-adic number fields provides a very strong additional constraints. The mathematical
problem is to understand how many unitary V matrices acting on U as U → D = UV respect the
number theoretic constraints plus the constraints nu = nd + 2 and nc = nd − 2.

It is instructive to what happens in much simpler 2-dimensional case. In this case the conditions
boil down to the conditions on n(i) imply |U | = |D| and this condition is equivalent with (say) the
condition |U11| = D11. U and D can be parameterized as

U =
(

cos(θ)exp(i(ψ) sin(θ)exp(iφ)
−sin(θ)exp(−iφ) cos(θ)exp(−iψ)

)
.

If cos(θ)2 and sin(θ)2 are rational numbers, exp(iθ) is associated with a Gaussian integer. A more
general requirement is that exp(iθ) belongs to a finite-dimensional extension of rational numbers
and thus corresponds to a products of a phase associated with Gaussian integer and a phase in a
finite-dimensional algebraic extension of rational numbers.
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Eliminating the trivial multiplicative phases gives a set of matrices U identifiable as a double
coset space X2 = SU(2)/U(1)R × U(1)L. The value of cos(θ) = |U11| serving as a coordinate for
X2 is respected by the right multiplication with V . Eliminating trivial U(1)R phase multiplication,
the space of V :s reduces to S2 = SU(2)/U(1)R. The condition that cos(θ) is not changed leaves
one parameter set of allowed matrices V .

The translation of these results to 3-dimensional case is rather straightforward. In the 3-
dimensional case the probabilities Pi2, Pi3, i = 1, 2 characterize a general matrix |U |, and V
can affect these probabilities subject to constraints on n(I). When trivial phases affecting the
probabilities are eliminated, the matrices U correspond naturally to points of the 4-dimensional
double coset space X4 = SU(3)/(U(1)× U(1))R × U(1)× U(1))L having dimension D = 4.

The two constraints on the probabilities mean that allowed solutions for given values of n(I)
define a 2-dimensional surface X2 in X4. The allowed unitary transformations V must be such that
they move U along this surface. Certainly they exist since X2 can be regarded as a local section in
SU(3) → X2 bundle obtained as a restriction of SU(3) → X4 bundle. The action of V on rows of
U is ordinary unitary transformation plus a 2-dimensional unitary transformation preserving the
Hermitian degenerate lengths Li = 9|Ui2|2 + 60|Ui3|2 = ni defining the sub-bundle SU(3) → X2.
Note for L1 = 0 (L2 = 0) the situation becomes 2-dimensional and solutions correspond to points
in S2. Thus these points seem to represent a conical singularity of X2.

The 2-dimensionality of the solution space means that two moduli (probabilities) of any row or
column of U or D matrix characterize the matrix apart from the non-uniqueness due to the gauge
choice allowing U(1)L ×U(1)R transformation of U . Of course, discrete sign degeneracy might be
present.

A highly non-trivial problem is whether the set X2 contains rational points and what is the
number of these points. For instance, Fermat’s theorem says that no rational solutions to the
equation xn + yn − zn = 0 exist for n > 2. The fact that the degenerate situation allows infinite
number of rational solutions suggest that they exist also in the general case. Note also that
the additional conditions are second order polynomial equations with rational coefficients so that
SU(3, Q) should contain non-trivial solutions to the equations.

It is possible to write |U | in a form containing minimal number of square roots:

|U11| = √
nu

p1
N1

, |U12| =
√

nu

9
r1
N1

, |U13| =
√

nu

60
s1
N1

,

|U21| = √
nc

p2
N2

, |U22| =
√

nc

9
r2
N2

, |U23| =
√

nc

60
s2
N2

,

|U31| = √
nt

p3
N3

, |U32| =
√

nt

9
r3
N3

, |U23| =
√

nt

60
s3
N3

.

(27)

Completely analogous expression holds true for D. ri, si and Ni are integers, and the defining
equations reduce in both cases to equations generalizing those satisfied by Pythagorean triangles

r2
1 + s2

1 = N2
1 ,

r2
2 + s2

2 = N2
2 ,

r2
3 + s2

3 = N2
3 . (28)

The square roots of ni are also eliminated from the unitarity conditions which become equations
with rational coefficients for the phases appearing in U and D. Hence there are good hopes that
even rational solutions to the conditions exist.

4.2 Number theoretic conditions on U and D matrices

The most stringent requirement would be that U and D matrices are rational unitary matrices.
A less stringent condition is that only the moduli squared of U and D are rational numbers. p-
Adicization allows also matrices for which various phases are products of Pythagorean phases with
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phases in an an extension of rational numbers defining a finite-dimensional extension of p-adic
numbers. The number theoretic conditions following from the rational unitarity on the moduli of
the U and D matrices are not completely independent of the parametrization used. The reason is
that the products of the parameters in some algebraic extension of the rationals can combine to
give a rational number. The safest parametrization to use is the one based on the moduli of the
U and D matrix.

Assuming rationality for the mixing matrix all moduli can be written in the form

|Dij | =
nij

N
. (29)

If only moduli squared are required to be rational, the condition is replaced with a milder one:

|Dij | =
nij√
N

. (30)

Here
√

N belongs to square root allowing algebraic extension of the p-adic numbers but is not an
integer itself. An even milder condition is

|Dij | =
√

nij

N
. (31)

The following arguments show that only this option is allowed. This option is also natural in light
or preceding general considerations.

1. Unitary and mass conditions modulo 8

For pij = (
√

nij
N )k, k = 1 or 2, the requirement that the rows are unit vectors implies

∑

j

nk
i,j = Nk ,

k = 1 or 2 . (32)

The problem of finding vectors with integer valued components and with a given integer valued
length squared m (k = 2 case) is a well known and well understood problem of the number theory
[22]. The basic idea is to write the conditions modulo 8 and use the fact that the square of odd
(even) integer is 1 (0 or 4) modulo 8. The result is that one must have

m ∈ {1, 2, 3, 5, 6} , (33)

for the conditions to possess nontrivial solutions. For m = N case this is the only condition needed.
In m = N2 case the condition implies that N must be odd.

Using this result one can write the mass squared conditions modulo 8 for k = 2 as

3n2
i,2 + 4n2

i,3 = niX ,

X = 1 for m = N2 ,

X ∈ {1, 2, 3, 5, 6} for m = N . (34)
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Here modulo 8 arithmetics is understood. In m = N2 case one must have ni ∈ {0, 3, 4} modulo
8. These conditions are not satisfied in general. For m = N conditions allow considerably more
general set of solutions. By summing the equations and using probability conservation one however
obtains 7N = 5N implying 2N = 0 so that the non-allowed value N = 4 or 0 results.

For k = 1 no obvious conditions result on the values of ni and only this option is allowed by
mass conditions for the physical masses.

2. Rational unitarity cannot hold true for U and D matrices separately

The mixing scenario is not consistent with the assumption that the matrix elements of U and
D matrix are complex rational numbers. If this were the case then matrix elements had to be
proportional to a common denominator 1/N such that N is odd integer (otherwise the conditions
stating that the unit vector property of the rows is not satisfied). The conditions

∑

j

rij = 1 ,

9r12 + 60r13 = nd ,

9r22 + 60r23 = ns ,

9r32 + 60r33 = nb ,

rij =
nij

Ni
,

(35)

can be written modulo 8 as

∑

j

nk
ij = Nk ,

nk
12 + 4nk

13 = ndN
k ,

nk
22 + 4nk

23 = nsN
k ,

nk
32 + 4nk

33 = nbN
k ,

rij = (
nij

N
)k/2 , k = 1 or 2 .

(36)

1. Consider first the case k = 2. For odd n n2 = 1 holds true and for even n n2 = 4 or 0 holds
true. It is easy to see that the conditions can be satisfied only of all integers are proportional
to 4 but this cannot be possible since it would be possible since nij an N cannot contain
common factors. Thus at least an extension allowing square roots is needed. Quite generally
from N2 = 1 mod 8 the above equations give

nqi mod 8 ∈ {0, 3, 4, 7} .

This condition fails to be satisfied by in the general case.

2. For the option k = 1 for which only the probabilities are rational the sum of all three
equations gives 5N = 5N so that equations are consistent.

3. Phase factors
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The phase factors associated with the rows of the mixing matrix are rational provided the
corresponding angles correspond to Pythagorean triangles. Combining this property with the
orthogonality conditions for the rows of the U matrix, one obtains highly nontrivial conditions
relating the integers characterizing the sides of the Pythagorean triangle to the integers nij . The
requirement that the imaginary parts of the inner product vanish, gives the conditions

si,2

si3
=

n13ni3

n12n22
, i = 2, 3 . (37)

Combining this conditions with the general representation for the sines of the Pythagorean triangle

sin(φ) =
2rs

r2 + s2
or

r2 − s2

r2 + s2
, (38)

one obtains conditions relating the integers appearing characterizing the triangle to the integers
on the right hand side.

An interesting possibility is that the lengths of the hypothenusae of the triangles associated
with s(i, 2) ((r(i), s(i))) and si3 ((r1(i), s1(i))) are the same and sines correspond to the products
2rs:

r2(i) + s2(i) = r2
1(i) + s2

1(i) ,

si,2 = 2r(i)s(i)/(r2(i) + s2(i)) ,

si,3 = 2r1(i)s1(i)/(r2
1(i) + s2

1(i)) . (39)

In this case the conditions give

r(i)s(i)
r1(i)s1(i)

=
n13ni3

n12n22
. (40)

The conditions are satisfied if one has

r(i)s(i) = n13ni3 ,

r1(i)s1(i) = n12n22 . (41)

This implies that r(i) and s(i) are products of the factors contained in the product n13ni3. Anal-
ogous conclusion applies to r1(i) and s1(i).

Additional number theoretic conditions are obtained from the requirement that the real parts
of the inner products between first row and second and third rows vanish:

n11ni1 + ci,2n12ni2 + ci,3n13ni3 = 0 , i = 2, 3 . (42)

4.3 The parametrization suggested by the mass squared conditions

To understand the consequences of the mass squared conditions, it is useful to use a parametriza-
tion, which is more natural for the treatment of the mass squared conditions than the standard
parametrization:
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U =




r11 r12 r13

r21x2 r22x2exp(iφ22) r23x2exp(iφ23)
r31x3 r32x3exp(iφ32) r33x3exp(iφ33)




x2 = exp(iφ2) ,
x3 = exp(iφ3) .

(43)

In case of D matrix, the phase factors x2 and x3 can be chosen to be trivial. As far as the
treatment of the mass conditions and unitarity conditions for the rows is considered, one can
restrict the consideration to the case, when the overall phase factors are trivial. The remaining
parameters are not independent and one on can deduce the formulas relating the moduli rij as
well as the phase angles φij to the parameters r11 and r12. In general, the resulting parameters
are not real and unitarity is broken.

Mass squared conditions and the requirement that the rows are unit vectors:

9r2
i2 + 60r2

i3 = ni , i = 1, 2 ,∑

k

r2
ik = 1 , (44)

allows one to express ri2 and ri3 in terms of ri1

ri2 =

√
[−ni

51
+

20
17

(1− r2
i1)] ,

ri3 =

√
[
ni

51
− 3

17
(1− r2

i1)] . (45)

The requirement that the rows are orthogonal to each other, relates the phase angles φij in terms
to r11 and r21. Using the notations sin(φij) = sij and cos(φij) = cij , one has

ci2 = ai

bi
, ci3 = − (A1i+ci2A2i)

A3i
,

si2 = ε(i)
√

1− c2
i2 , si3 = −A2i

A3i
si2 ,

A1i = r11ri1 , A2i = r12ri2

A3i = r13ri3 , ε(i) = ±1 .
ai = A2

3i −A2
1i −A2

2i , bi = 2A1iA2i ,

(46)

The sign factors ε(i) are not completely free and must be chosen so that the second and third row
are orthogonal.

The mass conditions imply the following bounds for the parameters ri1

mi ≤ ri1 ≤ Mi ,

mi =
√

1− ni

9
for ni ≤ 9 ,

mi = 0 for ni ≥ 9 ,

Mi =
√

1− ni

60
. (47)

29



The boundaries for the regions of the solution manifold in (r11, r21) plane can be understood as
follows. For given values of r11 and r21 there are in general two solutions corresponding to the sign
factor ε(i) appearing in the equations defining the solutions of the mass squared conditions. This
means just that complex conjugation gives a new solution from a given one. These two branches
become degenerate, when the phase factors become ±1 so that (si2, si3) vanishes for i = 2 or i = 3.
Thus the curves at which one has (si2 = 0, si3 = 0) define the boundaries of the projection of the
solution manifold to (r11, r21) plane. At the boundaries the orthogonality conditions reduce to the
form

r11ri1 + ε(i, 2)r12ri2 + εi3r13ri3 = 0 , i = 2 or 3 ,
ε22 = ε32 ,
ε23 = −ε33

(48)

where εij corresponds to the value of the cosine of the phase angle in question. Consistency requires
that either second or third row becomes real on the boundary of the unitarity region and that the
matrices reduce to orthogonal matrices at the dip of the region allowed by unitarity.

4.4 Thermodynamical model for the topological mixing

What would be needed is a physical model for the topological mixing allowing to deduce U and
D matrices from first principles. The physical mechanism behind the mixing is change of the
topology of X2 in the dynamical evolution defined by the light like 2-surface X3

l defining parton
orbit. This suggests that the topology changes g → g ± 1 dominate the dynamics so that matrix
elements U13 and D13 should be indeed small so that the weird looking result PU

11 ' 1/3 follows
from the requirement nu = 6. This model however suggests that the matrix elements U23 and D23

could be large unlike in the original model for U and D matrices.

4.4.1 Solution of thermodynamical model

A possible approach to the construction of mixing matrices is based on the idea that the interactions
causing the mixing lead to a thermal equilibrium so that the entropies for the ensemble defined
by the probabilities pU

ij and pD
ij matrix is maximized (the subscripts U and D are dropped in the

sequel).

1. The elements in the three rows of the mixing matrix represent probabilities for three states of
the system with energies (Ei1, Ei2, Ei3) = (0, 9, 60) and average energy is fixed to 〈E〉 = 69.

2. There are usual constraints from probability conservation for each row plus two independent
constraints from columns. The latter constraints can be regarded as a constraint on a second
quantity equal to 1 for each column and brings in variable analogous to chemical potential
besides temperature.

The constraint from mass squared for the third row follows from these constraints. The inde-
pendent constraints can be chosen to be the following ones

∑
j pij − 1 = 0 , i = 1, 2, 3

∑
i pij − 1 = 0, j = 1, 2 ,

9pi2 + 60pi3 − nqi = 0 , i = 1, 2 .
(49)

The obvious notations (q1, q2) = (d, s) and (q1, 22) = (u, c) are introduced. The conditions on
mass squared are completely analogous to the conditions fixing the energy of the ensemble and

30



thus its temperature, and thermodynamical intuition suggests that the probabilities pij decrease
exponentially as function of Ej in the absence of additional constraints coming from the probability
conservation for the columns and meaning presence of chemical potential.

The variational principle maximizing entropy in presence of these constraints can be expressed
as

L = S + Sc

S =
∑

i,j

pij × log(pij)

Sc =
∑

i

λi(
∑

j

pij − 1) +
∑

j=1,2

µj(
∑

i

pij − 1) +
∑

i=1,2

σi(9pi2 + 60pi3 − nqi
) .

(50)

The variational equation is

∂pij L = 0 , (51)

and gives the probabilities as

p11 = 1
Z1

, p12 = xx3
1

Z1
p13 = yx20

1
Z1

,

p21 = 1
Z2

, p22 = xx3
2

Z2
p13 = yx20

2
Z2

,

p31 = 1
Z3

, p32 = x
Z3

p33 = y
Z3

,

(52)

Here the parameters x, y, x1, x2 are defined as

x = exp(−µ2) , y = exp(−µ3) ,
x1 = exp(−3σ1) , x2 = exp(−3σ2) .

(53)

whereas the row partition functions Zi are defined as

Z1 = 1 + xx3
1 + yx20

1 , Z2 = 1 + xx3
2 + yx20

2 , Z3 = 1 + x + y . (54)

Note that the parameters λi have been eliminated. There are four parameters µ2, µ3, σ2, σ3 and
2 conditions from columns and 2 mass conditions so that the number of solutions is discrete and
only finite number of U and D matrices are possible in the thermodynamical approximation.

4.4.2 Mass squared conditions

The mass squared conditions read as

9xx3
1 + 60yx20

1 = n(q1)Z1 , 9xx3
2 + 60yx20

2 = n(q2)Z2 . (55)

These equations allow to solve y as a simple linear function of x
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y = n(q1)−xx3
1(9−n(q1))

(60−n(q1))x20
1

≡ kx + l , y = n(q2)−xx3
2(9−n(q2))

(60−n(q2)x20
2

. (56)

The identification of the two expressions for y allows to solve x1 in terms of x2 using equation of
form x20

1 − bx3
1 + c = 0:

[
60− n(q2)x20

2

] [
n(q1)− xx3

1(9− n(q1))
]

=
[
60− n(q1))x20

1

] [
n(q2)− xx3

2(9− n(q2)
]

. (57)

In the most general case the equation allows 20 roots x1 = x2(x1).

4.4.3 Probability conservation

Probability conditions give additional information. By solving 1/Z3 from the first column gives

Z1Z2Z3 − Z1Z2 − Z2Z3 − Z1Z3 = 0 , (58)
(59)

This equation is a polynomial equation for in x1 and x2 with degree 20 and together with Eq. 57
having same degree determines and (x1, x2) the possible values of x1 and x2 as function of x. The
number of real positive roots is at most 202 = 400.

Probability conservation for the second column gives

x
[
(1− x3

1)Z2 + (1− x3
2)Z1

]
+ (1− x)Z1Z2 = 0 . (60)

The row partition functions Zi are linear functions of x and y and mass squared conditions give
y = kx + l (see Eq. 57) so that a third order polynomial equation for x results and gives the roots
as functions of control parameters x1 and x2. Either 1 or 3 real roots are obtained for x. The
values of x1 and x2 are determined by the probability constraint Eq. 59 for the first column and
Eq. 57 relating x1 and x2.

4.4.4 The analogy with spontaneous magnetization

Physically the situation is analogous to a spontaneous symmetry breaking with y representing
the external magnetizing field and x linear magnetization or vice versa. x1 and x2 are control
parameters characterizing the interaction between spins. For single real root for x no spontaneous
magnetization occurs but for 3 real roots there are two directions of spontaneous magnetization
plus unstable state. In the recent case the roots must be positive. Since the maximal number of
roots for (x1, x2) is 400, the maximal number of real roots is 1200. The trivial solution to the
conditions is p11 = 1, p22 = 1, p33 = 1 with x = y = 0 represents corresponds to the absence of
external magnetizing field and of magnetization.

4.4.5 Catastrophe theoretic description of the system

In the catastrophe theoretic approach one can see that situation as a cusp catastrophe with x as
a behavior variable and x1, x2 in the role of control variables. In the standard parametrization of
the cusp catastrophe [24] the conditions correspond to the equation
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x3 − a− bx = 0 ,

(61)

In the recent case a more general polynomial P3(x) easily transformable to the standard form is
in question. The coefficients of the polynomial P3(x) = Dx3 + Cx2 + Bx + A are

A = Q(x1)Q(x2) ,

B = P (x1)Q(x2) + P (x2)Q(x1) + R(x2) + R(x1) ,

C = P (x1)R(x2) + P (x2)R(x1)−R(x1)Q(x2)−R(x2)Q(x1) ,

D = R(x1)R(x2) ,

P (u) = 1− u3 , Q(u) = 1 + lu20 , R(u) = u3 + ku20 . (62)

The trivial scaling transformation A → A/D = Â, B → B/D = B̂, C → C/D = Ĉ and the shift
x → x + Ĉ/3 casts the equation in the standard form and gives

a = −Â +
Ĉ3

9
,

b = −B̂ +
Ĉ2

3
.

(63)

The curve

a = ±2(
b

3
)3/2 , b ≥ 0 (64)

represents the bifurcation set for the solutions. For b ≥ 0, |a| ≤ ( b
3 )3/2 three roots are obtained for

x. a = b = 0 corresponds to the dip of the cusp. Three solutions result under the conditions

Ĉ2

3
≥ 3B̂ ,

(−B̂ +
Ĉ2

3
)3 ≤ (−Â + Ĉ3

9 )2

4
,

Â =
Q(x1)Q(x2)
R(x1)R(x2)

,

B̂ =
P (x1)Q(x2) + P (x2)Q(x1) + R(x2) + R(x1)

R(x1)R(x2)
,

Ĉ =
P (x1)R(x2) + P (x2)R(x1)−R(x1)Q(x2)−R(x2)Q(x1)

R(x1)R(x2)
,

P (u) = 1− u3 , Q(u) = 1 + lu20 , R(u) = u3 + ku20 . (65)

The boundaries of the regions are defined by polynomial equations for x1 and x2. . The two
mass squared conditions and the probability conservation for the first row select a discrete set of
parameter combinations.
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One might ask whether U and D matrices could correspond to different solutions of these
equations for same values of nqi

. This cannot be the case since this would predict too large u− d
mass difference. Orthogonalization conditions for the rows should determine the phases more
or less uniquely and could force CP breaking. The requirement that probabilities are rational
valued implies that x1, x2, x and y are rational and poses very strong additional conditions to the
solutions. The roots should correspond to very special solutions possessing symmetries so that the
solutions of polynomial equations give probabilities as rational numbers. Note however that the
solutions of polynomial equations with integer coefficients are in question and the solutions are
algebraic numbers: this is enough as far as the p-adicization of the theory is considered.

4.4.6 Maximization of entropy solving constraint equations explicitly

The mass squared conditions allow to express the probabilities pij in terms of p11 and p21 (for
instance) and this allows a rather concise representation for the solution to the maximization the
entropy of topological mixing. The key formulas are following.

p31 = 1− p11 − p12 ,

pi2 = −ni

51
+

20
17

(1− pi1) , i = 1, 2 ,

pi3 =
ni

51
− 3

17
(1− pi1) , i = 1, 2 . (66)

Expressing entropy directly in terms of p11 and p21, the conditions for the maximization of entropy
imply the equations

log(pij)Xij = 0 , log(pij)Y ij = 0 , (67)

where a summation over repeated indices is carried out. The matrices Xij = ∂p11pij and Y ij =
∂p21pij are given by

X =




1 − 20
17

3
17

0 0 0
−1 20

17 − 3
17




Y =




0 0 0
1 − 20

17
3
17

−1 20
17 − 3

17




(68)

The equations can be transformed into the form

∏
ij p

Xij

ij = 1 ,
∏

ij p
Yij

ij = 1 . (69)

When written explicitly, these equations read as

p11
1−p11−p21

× ( −n1+60(1−p11)
−n3+60(p11+p21)

)−20/17 × ( n1−9(1−p11)
n3−9(p11+p21)

)3/17 = 1 ,

p21
1−p11−p21

× ( −n2+60(1−p21)
−n3+60(p11+p21)

)−20/17 × ( n2−9(1−p21)
n3−9(p11+p21)

)3/17 = 1 .

(70)
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The equations can be cast into polynomial equations in p11 and p21 by taking 17:th power of both
equations. This gives polynomial equations of degree d = 17 + 20 + 3 = 40. The total number of
solutions to the equations is at most 40 × 40 = 1600. The previous estimate gave upper bound
3 × 20 × 20 = 1200 for the number of solution. It might be that some symmetry is involved and
reduces the upper bound by a factor 3/4.

The solutions can be sought using gradient dynamics in which system in (p11, p21) plane drifts
in the force field defined by the gradient ∇S of the entropy S = −∑

ij pij log(pij) and ends up to
the maximum of S, S = −∑

ij pij log(pij).

dp11
dt = ∂p11S = −Xij log(pij) ,

dp21
dt = ∂p21S = −Y ij log(pij) ,

(71)

The conditions that the probabilities are positive give the constraints

1− n1

9
≤ p11 ≤ 1− n1

60
,

1− n2

9
≤ p21 ≤ 1− n2

60
,

0 ≤ p21 ≤ 1− p11 ,
69− n1 − n2

60
− p11 ≤ p21 ≤ 69− n1 − n2

9
− p11

(72)

on the region containing the solutions.

4.5 U and D matrices from the knowledge of top quark mass alone?

As already found, a possible resolution to the problems created by top quark is based on the addi-
tivity of mass squared so that top quark mass would be about 230 GeV, which indeed corresponds
to a peak in mass distribution of top candidate, whereas tt̄ meson mass would be 163 GeV. This
requires that top quark mass changes very little in topological mixing. It is easy to see that the
mass constraints imply that for nt = nb = 60 the smallness of Vi3 and V (3i) matrix elements
implies that both U and D must be direct sums of 2 × 2 matrix and 1 × 1 unit matrix and that
V matrix would have also similar decomposition. Therefore nb = nt = 59 seems to be the only
number theoretically acceptable option. The comparison with the predictions with pion mass led
to a unique identification (nd, nb, nb) = (5, 5, 59),(nu, nc, nt) = (4, 6, 59).

4.5.1 U and D matrices as perturbations of matrices mixing only the first two genera

This picture suggests that U and D matrices could be seen as small perturbations of very simple U
and D matrices satisfying |U | = |D| corresponding to n = 60 and having (nd, nb, nb) = (4, 5, 60),
(nu, nc, nt) = (4, 5, 60) predicting V matrix characterized by Cabibbo angle alone. For instance,
CP breaking parameter would characterize this perturbation. The perturbed matrices should obey
thermodynamical constraints and it could be possible to linearize the thermodynamical conditions
and in this manner to predict realistic mixing matrices from first principles. The existence of
small perturbations yielding acceptable matrices implies also that these matrices be near a point
at which two different matrices resulting as a solution to the thermodynamical conditions coincide.

D matrix can be deduced from U matrix since 9|D12|2 ' nd fixes the value of the relative phase
of the two terms in the expression of D12.
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|D12|2 = |U11V12 + U12V22|2
= |U11|2|V12|2 + |U12|2|V22|2

+ 2|U11||V12||U12||V22|cos(Ψ) =
nd

9
,

Ψ = arg(U11) + arg(V12)− arg(U12)− arg(V22) .

(73)

Using the values of the moduli of Uij and the approximation |V22| = 1 this gives for cos(Ψ)

cos(Ψ) =
A

B
,

A =
nd − nu

9
− 9− nu

9
|V12|2 ,

B =
2

9|V12|
√

nu(9− nu) . (74)

The experimentation with different values of nd and nu shows that nu = 6, nd = 4 gives cos(Ψ) =
−1.123. Of course, nu = 6, nd = 4 option is not even allowed by nt = 60. For nd = 4, nu = 5 one
has cos(Ψ) = −0.5958. nd = 5, nu = 6 corresponding to the perturbed solution gives cos(Ψ) =
−0.6014.

Hence the initial situation could be (nu = 5, ns = 4, nb = 60), (nd = 4, ns = 5, nt = 60)
and the physical U and D matrices result from U and D matrices by a small perturbation as
one unit of t (b) mass squared is transferred to u (s) quark and produces symmetry breaking as
(nd = 5, ns = 5, nb = 59), (nu = 6, nc = 4, nt = 59).

The unperturbed matrices |U | and |D| would be identical with |U | given by

|U11| = |U22| = 2
3 , |U12| = |U21| =

√
5

3 , (75)

The thermodynamical model allows solutions reducing to a direct sum of 2× 2 and 1× 1 matrices,
and since |U | matrix is fixed completely by the mass constraints, it is trivially consistent with the
thermodynamical model.

4.5.2 Direct search of U and D matrices

The general formulas for pU and pD in terms of the probabilities p11 and p21 allow straightforward
search for the probability matrices having maximum entropy just by scanning the (p11, p21) plane
constrained by the conditions that all probabilities are positive and smaller than 1. In the physically
interesting case the solution is sought near a solution for which the non-vanishing probabilities are
p11 = p22 = (9− n1)/9, p12 = p21 = n1/9, p33 = 1, n1 = 4 or 5. The inequalities allow to consider
only the values p11 ≥ (9− n1)/9.

1. Probability matrices pU and pD

The direct search leads to maximally entropic pD matrix with (nd, ns) = (5, 5):

pD =




0.4982 0.4923 0.0095
0.4981 0.4924 0.0095
0.0037 0.0153 0.9810


 , pD

0 =




0.5556 0.4444 0
0.4444 0.5556 0
0 0 1


 .

(76)
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pD
0 represents the unperturbed matrix pD

0 with n(d = 4), ns = 5 and is included for the purpose of
comparison. The entropy S(pD) = 1.5603 is larger than the entropy S(pD

0 ) = 1.3739. A possible
interpretation is in terms of the spontaneous symmetry breaking induced by entropy maximization
in presence of constraints.

A maximally entropic pU matrix with (nu, nc) = (5, 6) is given by

pU =




0.5137 0.4741 0.0122
0.4775 0.4970 0.0254
0.0088 0.0289 0.9623




(77)

The value of entropy is S(pU ) = 1.7246. There could be also other maxima of entropy but in the
range covering almost completely the allowed range of the parameters and in the accuracy used
only single maximum appears.

The probabilities pD
ii resp. pU

ii satisfy the constraint p(i, i) ≥ .492 resp. pii ≥ .497 so that the
earlier proposal for the solution of proton spin crisis must be given up and the solution discussed
in [D2] remains the proposal in TGD framework.

2. Near orthogonality of U and D matrices

An interesting question whether U and D matrices can be transformed to approximately or-
thogonal matrices by a suitable (U(1) × U(1))L × (U(1) × U(1))R transformation and whether
CP breaking phase appearing in CKM matrix could reflect the small breaking of orthogonality.
If this expectation is correct, it should be possible to construct from |U | (|D|) an approximately
orthogonal matrix by multiplying the matrix elements |Uij |, i, j ∈ {2, 3} by appropriate sign fac-
tors. A convenient manner to achieve this is to multiply |U | (|D|) in an element wise manner
((A ◦B)ij = AijBij) by a sign factor matrix S.

1. In the case of |U | the matrix U = S◦|U |, S(2, 2) = S(2, 3) = S(3, 2) = −1, Sij = 1 otherwise,
is approximately orthogonal as the fact that the matrix UT U given by

UT U =




1.0000 0.0006 −0.0075
0.0006 1.0000 −0.0038
−0.0075 −0.0038 1.0000




is near unit matrix, demonstrates.

2. For D matrix there are two nearly orthogonal variants. For D = S ◦ |D|, S(2, 2) = S(2, 3) =
S(3, 2) = −1, Sij = 1 otherwise, one has

DT D =




1.0000 −0.0075 0.0604
−0.0075 1.0000 0.0143
0.0604 0.0143 1.0000


 .

The choice D = S ◦D, S(2, 2) = S(2, 3) = S(3, 3) = −1, Sij = 1 otherwise, is slightly better

DT D =




1.0000 −0.0075 0.0604
−0.0075 1.0000 0.0143
0.0601 0.0143 1.0000


 .
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3. The matrices U and D in the standard gauge

Entropy maximization indeed yields probability matrices associated with unitary matrices. 8
phase factors are possible for the matrix elements but only 4 are relevant as far as the unitarity
conditions are considered. The vanishing of the inner products between row vectors, gives 6
conditions altogether so that the system seems to be over-determined. The values of the parameters
s1, s2, s3 and phase angle δ in the ”standard gauge” can be solved in terms of r11 and r21.

The requirement that the norms of the parameters ci are not larger than unity poses non-trivial
constraints on the probability matrices. This should should be the case since the number of unitar-
ity conditions is 9 whereas probability conservation for columns and rows gives only 5 conditions
so that not every probability matrix can define unitary matrix. It would seem that that the con-
straints are satisfied only if the the 2 mass squared conditions and 2 conditions from the entropy
maximization are equivalent with 4 unitarity conditions so that the number of conditions becomes
5+4=9. Therefore entropy maximization and mass squared conditions would force the points of
complex 9-dimensional space defined by 3 × 3 matrices to a 9-dimensional surface representing
group U(3) so that these conditions would have a group theoretic meaning.

The formulas

ri2 =

√
[−ni

51
+

20
17

(1− r2
i1)] ,

ri3 =

√
[
ni

51
− 3

17
(1− r2

i1)] . (78)

and

U =




c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3exp(iδ) c1c2s3 + s2c3exp(iδ)
−s1s2 c1s2c3 + c2s3exp(iδ) c1s2s3 − c2c3exp(iδ)


 (79)

give

c1 = r11 , c2 = r21√
1−r2

11

,

s3 = r13√
1−r2

11

, cos(δ) = c2
1c2

2c2
3+s2

2s2
3−r2

22
2c1c2c3s2s3

.
(80)

Preliminary calculations show that for n1 = n2 = 5 case the matrix of moduli allows a continuation
to a unitary matrix but that for n1 = 4, n2 = 6 the value of cos(δ) is larger than one. This would
suggest that unitarity indeed gives additional constraints on the integers ni. The unitary (in the
numerical accuracy used) (nd, ns) = (5, 5) D matrix is given by

D =




0.7059 0.7016 0.0975
−0.7057 0.7017− 0.0106i 0.0599 + 0.0766i
−0.0608 0.0005 + 0.1235i 0.4366− 0.8890i


 .

The unitarity of this matrix supports the view that for certain integers ni the mass squared
conditions and entropy maximization reduce to group theoretic conditions. The numerical exper-
imentation shows that the necessary condition for the unitarity is n1 > 4 for n2 < 9 whereas for
n2 ≥ 9 the unitarity is achieved also for n1 = 4.
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4.5.3 Direct search for CKM matrices

The standard gauge in which the first row and first column of unitary matrix are real provides
a convenient representation for the topological mixing matrices: it is convenient to refer to these
representations as U0 and D0. The possibility to multiply the rows of U0 and D0 by phase factors
(U(1) × U(1))R transformations) provides 2 independent phases affecting the values of |V |. The
phases exp(iφj), j = 2, 3 multiplying the second and third row of D0 can be estimated from the
matrix elements of |V |, say from the elements |V11| = cos(θc) ≡ v11, sinθc = .226 ± .002 and
|V31| = (9.6± .9) ·10−3 ≡ v31. Hence the model would predict two parameters of the CKM matrix,
say s3 and δCP , in its standard representation.

The fact that the existing empirical bounds on the matrix elements of V are based on the
standard model physics raises the question about how seriously they should be taken. The possible
existence of fractally scaled up versions of light quarks could effectively reduce the matrix elements
for the electro-weak decays b → c + W , b → u + W resp. t → s + W , t → d + W since the decays
involving scaled up versions of light quarks can be counted as decays W → bc resp. W → tb. This
would favor too small experimental estimates for the matrix elements Vi3 and V3i, i = 1, 2. In
particular, the matrix element V31 = Vtd could be larger than the accepted value.

Various constraints do not leave much freedom to choose the parameters nqi . The preliminary
numerical experimentation shows that the choice (nd, ns) = (5, 5) and (nu, nc) = (5, 6) yields
realistic U and D matrices. In particular, the conditions |U(1, 1)| > .7 and |D(1, 1)| > .7 hold true
and mean that the original proposal for the solution of spin puzzle of proton must be given up.
In [D2] an alternative proposal based on more recent findings is discussed. Only for this choice
reasonably realistic CKM matrices have been found.

1. The requirement that the parameters |V11| (or equivalently, Cabibbo angle and |V31| are
produced correctly, yields CKM matrices for which CP breaking parameter J is roughly
one half of its accepted value. The matrix elements V23 ≡ Vcb, V32 ≡ Vtc, and V13 ≡ Vub

are roughly twice their accepted value. This suggests that the condition on V31 should be
loosened.

2. The following tables summarize the results of the search requiring that
i) the value of the Cabibbo angle sCab is within the experimental limits sCab = .223± .002 ,
ii) V31 = (9.6± .9) · 10−3, is allowed to have value at most twice its upper bound,
iii) V13 whose upper bound is determined by probability conservation, is within the experi-
mental limits .42 · 10−3 < |Vub| < 6.98 · 10−3 whereas V23 ' 4 × 10−3 should come out as a
prediction,
iv) the CP breaking parameter satisfies the condition |(J − J0)/J0| < .6, where J0 = 10−4

represents the lower bound for J (the experimental bounds for J are J × 104 ∈ (1− 1.7)).

The pairs of the phase angles (φ1, φ2) defining the phases (exp(iφ1), exp(iφ2)) are listed below

class 1 :
φ1 0.1005 0.1005 4.8129 4.8129
φ2 0.0754 1.4828 4.7878 6.1952

class 2 :
φ1 0.1005 0.1005 4.8129 4.8129
φ2 2.3122 5.5292 0.7414 3.9584 (81)

The phase angle pairs correspond to two different classes of U , D, and V matrices. The U , D and
V matrices inside each class are identical at least up to 11 digits(!). Very probably the phase angle
pairs are related by some kind of symmetry.

The values of the fitted parameters for the two classes are given by
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|V11| |V31| |V13| J/10−4

class 1 0.9740 0.0157 0.0069 .93953
class 2 0.9740 0.0164 0.0067 1.0267

V31 is predicted to be about 1.6 times larger than the experimental upper bound and for both
classes V23 and V32 are roughly too times too large. Otherwise the fit is consistent with the
experimental limits for class 2. For class 1 the CP breaking parameter is 7 per cent below the
experimental lower bound. In fact, the value of J is fixed already by the constraints on V31 and
V11 and reduces by a factor of one half if V31 is required to be within its experimental limits.

U , D and |V | matrices for class 1 are given by

U =




0.7167 0.6885 0.1105
−0.6910 0.7047− 0.0210i 0.0909 + 0.1310i
−0.0938 0.0696 + 0.1550i 0.1747− 0.9653i




D =




0.7059 0.7016 0.0975
−0.6347− 0.3085i 0.6358 + 0.2972i 0.0203 + 0.0951i
−0.0587− 0.0159i −0.0317 + 0.1194i 0.6534− 0.7444i




|V | =



0.9740 0.2265 0.0069
0.2261 0.9703 0.0862
0.0157 0.0850 0.9963




(82)

U , D and |V | matrices for class 2 are given by

U =




0.7167 0.6885 0.1105
−0.6910 0.7047− 0.0210i 0.0909 + 0.1310i
−0.0938 0.0696 + 0.1550i 0.1747− 0.9653i




D =




0.7059 0.7016 0.0975
−0.6347− 0.3085i 0.6358 + 0.2972i 0.0203 + 0.0951i
−0.0589− 0.0151i −0.0302 + 0.1198i 0.6440− 0.7525i




|V | =



0.9740 0.2265 0.0067
0.2260 0.9704 0.0851
0.0164 0.0838 0.9963




(83)

What raises worries is that the values of |V23| = |Vcb| and |V32| = |Vts| are roughly twice their
experimental estimates. This, as well as the discrepancy related to V31, might be understood in
terms of the electro-weak decays of b and t to scaled up quarks causing a reduction of the branching
ratios b → c + W , t → s + W and t → t + d. The attempts to find more successful integer
combinations ni has failed hitherto. The model for pseudoscalar meson masses, the predicted
relatively small masses of light quarks, and the explanation for tt meson mass supports this mixing
scenario.

5 Hadron masses

Besides the quark contributions already discussed, hadron mass squared can contain several other
contributions and the task is to find a model allowing to identify and estimate these contributions.
There are several guidelines for the numerical experimentation.
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1. Conformal weight, that is mass squared, is assumed to be additive for quarks corresponding
to the same p-adic prime. For instance, in case of qq mesons the mass would be

√
2m(q) and

the contribution of k = 113 u, d, s quarks to nucleon mass would be <
√

3 × 100 MeV and
thus surprisingly small. For cd meson quark masses would be additive.

2. Old fashioned quark model explains reasonably well hadron masses in terms of constituent
quark masses. Effective 2-dimensionality of partons suggests an interpretation for the con-
stituent quark as a composite structure formed by the current quark identified as a partonic
2-surface X2 characterized by k(q) and by join along boundaries bond, kind of a gluonic ”rub-
ber band” characterized by k = 107 and connecting X2 to the k = 107 hadronic 2-surface
X2(H) representing hadron. X2(qi) could be perhaps regarded as a hole in k = k(q) 3-
surface. The 2-dimensional visualization for a 3-dimensional topological condensation would
become much more than a mere visualization. This view about hadrons brings in mind
unavoidably the surreal 2-dimensional structures formed by organs like retina. Of course,
effective 2-dimensionality allows to characterize the entire Universe as an extremely complex
fractal 2-surface.

The large mass of the constituent quark would be due to the color Coulombic and spin-spin
interaction conformal weights of join along boundaries bond. Quark mass and the mass due
to the color interaction conformal weight would be additive unless k = 107 for the quark (it
seems that for η′ this is indeed the case!). Classical color gauge fluxes would flow between
k = 107 and k 6= 107 space-time sheets along the bonds. Color dynamics would take place at
k = 107 space-time sheet in the sense that color gauge flux between quarks q1 and q2 flows
first from X2((k(q1) to the hadronic 2-surface X2(k = 107) and then back to X2(k(q2)). The
induced Kähler field is always accompanied by a classical color gauge field and the classical
color gauge flux would represent non-perturbative aspects of color interactions at space-time
level.

3. A crucial observation is that the mass of η meson is rather precisely 4 times the pion mass
whereas the mass of its spin excited companion ω is very nearly the same as the mass of ρ
meson. This suggests that u, d quarks correspond to k = 109 inside η but to k = 113 inside
ω. This inspires the idea that the p-adic mass scale of quarks is dynamical and sensitive to
small perturbations as the fact that for CP2 type extremals the operators corresponding to
different p-adic primes reduce to one and same operator forces to suspect. If k characterizes
the length scale associated with the elementary particle horizon as

√
k multiple of CP2 length

scale, quark mass would be characterized by the size of elementary particle horizon sensitive
to the dynamics in hadronic mass scale.

The physical states would result as small perturbations of this degenerate ground state and
the value of k(q) would be sensitive to the perturbation. A rather nice fit for meson and
baryon masses results by assuming that the p-adic length scale of the quark is dynamical.

4. In the case of pseudoscalar mesons the scaled up versions of light quarks identifiable as
constituent quarks, turn out to explain almost all of the pseudo scalar meson mass, and
this inspires a new formulation for the old vision about pseudoscalar mesons as Goldstone
bosons. At least light pseudoscalar mesons are Goldstone bosons in the sense that the color
Coulombic and spin-spin interaction energies cancel in a good approximation so that quarks
at k 6= 107 space-time sheets are responsible for most of the meson mass. The assumption
that only k(s) is dynamical for light baryons is enough to understand the mass differences
between baryons having different numbers of strange quarks.

5. Color magnetic spin-spin interaction energies are indeed surprisingly constant among baryons.
Also for mesons spin-spin interaction energies vary much less than the scaling of quark masses

41



would predict on basis of QCD formula. This motivates the replacement of the interaction
energy with interaction conformal weight in the case of color interactions. The interac-
tion conformal weight is assignable to k = 107 space-time sheet, and the fact that spin-spin
splittings of also heavy hadrons can be measured in few hundred MeVs, supports this identifi-
cation. The mild dependence of color Coulombic conformal weight and spin-spin interaction
conformal weight on hadron would be due to their dependence on the primes k(qi) and
k = 107 characterizing space-time sheets connected by the the color bonds qi → 107 and
107 → qj .

6. The values for the parameters sc
ij and Sij characterizing color Coulombic and color magnetic

interaction conformal weights can be deduced from the mass squared differences for hadrons
and assuming definite values for the parameters k(qi) characterizing quark masses. It seems
that no other sources to meson mass (or at least pion mass) are needed.

7. In the case of nucleons the understanding of nucleon mass requires a large additional contri-
bution about 780 MeV since quarks contribute only about 160 MeV to the mass of nucleon.
This contribution can be assumed to be same for all baryons as the possibility to understand
baryon mass differences in terms of quark masses demonstrates. The most plausible identi-
fication of this contribution is in terms of 2- or 3-particle state formed by super-canonical
gluons assignable to k = 107 hadronic space-time sheet and having conformal weight s = 16
corresponding to mass 934.2 MeV (rather near to nucleon mass and η′ mass). This leads to a
vision about non-perturbative aspects of color interactions and allows to understand baryon
masses with accuracy better than one per cent. Also a connection with hadronic string model
emerges and hadronic string tension is predicted correctly.

5.1 The definition of the model for hadron masses

The defining assumptions of the model of hadron masses are following. CP2 mass defines the
overall elementary particle mass scale. Electron mass determines this mass only in certain limits.

5.1.1 Model for hadronic quarks

The numerical construction of U and D matrices using the thermodynamical model for the topo-
logical mixing justifies the assumptions nd = ns = 5, nb = 59 and nu = 5, nc = 6, nt = 58.

Quarks can appear both as free quarks and bound state quarks and the value of k(q) is in
general different for free and bound state quarks and can depend on hadron in case of bound state
quarks. This allows to understand satisfactorily the masses of low lying hadrons.

5.1.2 Quark mass contribution to the mass of the hadron

Quark mass squared is p-adically additive for quarks with same value of p-adic prime. In the case
of meson one has

m2
M (p1 = p2) = m2

q1
+ m2

q2
. (84)

mq denotes constituent quark mass which is larger than current quark mass due to the smaller
value of k.

Masses are additive for different values of p.

mM (p1 6= p2) = mq1 + mq2 . (85)

The generalization of these formulas to the cse of baryons is trivial.

42



5.1.3 Super-canonical gluons and non-perturbative aspects of hadron physics

At least in the case of light pseudoscalar mesons the contribution of quark masses to the mass
squared of meson dominates whereas spin 1 mesons contain a large contribution identified as color
interaction conformal weight (color magnetic spin-spin interaction conformal weight and color
Coulombic conformal weight). This conformal weight cannot however correspond to the ordinary
color interactions alone and is negative for pseudoscalars and compensated by some unknown
contribution in the case of pion in order to avoid tachyonic mass. Quite generally this realizes
the idea about light pseudoscalar mesons as Goldstone bosons. Analogous mass formulas hold for
baryons but in this case the additional contribution which dominates.

The unknown contribution can be assigned to the k = 107 hadronic space-time sheet and
must correspond to the non-perturbative aspects of QCD and the failure of the quantum field
theory approach at low energies. In TGD the failure of QFT picture corresponds to the presence
of configuration space degrees of freedom (”world of classical worlds” ) in which super-canonical
algebra acts. The failure of the approximation assuming single fixed background space-time is in
question.

The purely bosonic generators carry color and spin quantum numbers: spin has however
the character of orbital angular momentum. The only electro-weak quantum numbers of super-
generators are those of right-handed neutrino. If the super-generators degrees carry the quark spin
at high energies, a solution of proton spin puzzle emerges [F5].

The presence of these degrees of freedom means that there are two contributions to color inter-
action energies corresponding to the ordinary gluon exchanges and exchanges of super-canonical
gluons. For g = 0 these gluons are massless and in absence of topological mixing could form a
contribution analogous to sea or Bose-Einstein condensate. For g = 1 their mass can be calculated.
It turns out the model assuming same topological mixing as in case of U quarks leads to excellent
understanding of baryon masses assuming that hadron spin correlates with the super-canonical
particle content of the hadronic space-time sheet.

5.1.4 Top quark mass as a fundamental constraint

CP2 mass is an important parameter of the model. The vanishing second order contribution to
electron mass gives an upper bound for CP2 mass. The bound Ye ≤ .7357 can be derived from the
requirement that it is possible to reproduce τ mass in p-adic thermodynamics. Maximal second
order contribution corresponds to a minimal CP2 mass reduced by a factor

√
5/6 = .9129 from

its maximal value. There is a natural mechanism making second order contribution negligible.
Leptonic masses tend to be predicted to be few per cent too high [F3] if the second order contribu-
tion from p-adic thermodynamics to the electron mass vanishes, which suggests that second order
contribution might be there.

For Ye = 0 and Yt = 1 the most recent experimental best estimate 169.1 GeV [58] for top quark
mass is reproduced exactly. Even Yt = 0 allows a prediction in the allowed range. For too large Ye

top quark mass is predicted to be too small unless one allows first order Higgs contribution to the
top quark mass. This means that CP2 mass can be scaled down from its maximal value at most
2.5 per cent. This translates to the condition Ye < .26. It is possible to understand quark masses
satisfactorily by assuming that Higgs contribution is second order p-adically and even negligible.
In fact, there are good arguments suggesting that Higgs does not develop vacuum expectation at
fermionic space-time sheets [F3]. If this is the case, top quark mass gives a very strong constraint
to the model.

The super-canonical color interactions associated with k = 107 space-time sheet give rise to
the dominant reduction of the color conformal weight having interpretation in terms of color
magnetic and electric conformal weights. Canonical correspondence implies that this contribution
is always non-negative. Therefore the simple additive formula can lead to a situation in which the

43



contribution of quarks to the meson mass can be slightly larger than meson mass and it is not
obvious whether it is possible to reduce this contribution by any means since the reduction of CP2

mass scale makes top quark mass too small.
For diagonal mesons for which quarks have the same value of p-adic prime, ordinary color

interaction between quarks can contribute negative conformal weight reducing the contribution to
the mass squared. In the case of non-diagonal mesons it is not clear whether this kind of color
interaction exists. This kind of gluons would correspond to pairs of light-like partonic 3-surfaces for
which throats correspond to different values of p-adic prime p. These are in principle possible but
could couple weakly to matter. It seems that the parameters of the model, essentially CP2 mass
scale strongly constrained by the top quark mass, allow the quark contributions of non-diagonal
mesons to be below the mass of the meson.

The fact that standard QCD model for color binding energies works rather well for heavy mesons
suggests that the notion of negative color binding energy might make sense and could explain the
discrepancy. The mixing of real and p-adic physics descriptions is however aesthetically very un-
appealing but might be the only way out of the problem. The p-adic counterpart of this description
in case of heavy diagonal mesons would be based on the introduction of a negative color Coulombic
contribution to the the conformal weight of quark pair.

5.1.5 Smallness of isospin splittings

The smallness of isospin splittings inside Is = 1/2 doublets poses an further constraint. d113−u113

mass difference is about ∆md−u = 13 MeV and larger than typical isospin splitting. The repulsive
Coulomb interaction between quarks typically tends to reduce the mass differences due to ∆md−u

and the the sign of ∆md−u explains the ”wrong” sign of n-p mass difference equal to ∆mn−p = 1.3
MeV. Non-diagonal hadrons containing scaled up u and d quarks would have anomalously large
isospin splittings. On the other hand, for a diagonal meson containing b quark and scaled up u
and d quark isospin splitting is proportional to (m2

d −m2
u)/mb and small. B meson corresponds

to this kind of situation.

5.2 The anatomy of hadronic space-time sheet

Although the presence of the hadronic space-time sheet having k = 107 has been obvious from the
beginning, the questions about its anatomy emerged only quite recently after the vision about the
spectrum of Kähler coupling strength had emerged [C5, F5].

In the case of pseudoscalar mesons quarks give the dominating contribution to the meson mass.
This is not true for spin 1/2 baryons and the dominating contribution must have some other
origin. TGD allows to identify this contribution in terms of states created by purely bosonic
generators of super-canonical algebra and having as a space-time correlate CP2 type vacuum
extremals topologically condensed at k = 107 hadronic space-time sheet (or having this space-time
sheet as field body). Proton and neutron masses are predicted with .5 per cent accuracy and
∆ − N mass splitting with .6 per cent accuracy. A further outcome is a possible solution to the
spin puzzle of proton proposed already earlier [F5].

5.2.1 Quark contribution cannot dominate light baryon mass

The first guess would be that the masses give dominating contribution to the mass of baryon.
Since mass squared is additive, this would require rather large quark masses for proton and neu-
tron. k(d) = k(u) = k(s) = 108 would give (m(d),m(u),m(s)) = (571.3, 520.4, 616.6) MeV
and (m(n),m(p)) = (961.1, 931.7) MeV to be compared with the actual masses (m(n),m(p) =
(939.6, 938.3) MeV. The difference looks too large to be explainable in terms of Coulombic self-
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interaction energy. λ− n mass splitting would be 27.6 MeV for k(s) = 108 which is much smaller
than the real mass splitting 176.0 MeV. For k(s) = 110 one would have 120.0 MeV.

5.2.2 Does k = 107 hadronic space-time sheet give the large contribution to baryon
mass?

In the sigma model for baryons the dominating contribution to the mass of baryon results as a
vacuum expectation value of scalar field and light pseudoscalar mesons are analogous to Goldstone
bosons whose masses are basically due to the masses of light quarks.

This would suggest that k = 107 gluonic/hadronic space-time sheet gives a large contribution
to the mass squared of baryon. p-Adic thermodynamics allows to expect that the contribution to
the mass squared is in a good approximation of form

∆m2 = nm2(107) ,

where m2(107) is the minimum possible p-adic mass mass squared and n a positive integer. One
has m(107) = 210m(127) = 210me/

√
(5) = 233.55 MeV for Ye = 0 favored by the top quark mass.

1. n = 11 predicts (m(n),m(p)) = (944.5, 939.3) MeV for k = 113 quarks: the actual masses
are (m(n),m(p) = (939.6, 938.3) MeV. Coulombic repulsion between u quarks could reduce
the p-n difference to a realistic value.

2. λ − n mass splitting would be 184.7 MeV for k(s) = 111 to be compared with the real
difference which is 176.0 MeV. Note however that color magnetic spin-spin splitting requires
that the ground state mass squared is larger than 11m2

0(107).

5.2.3 What is responsible for the large ground state mass of the baryon?

The observations made above do not leave much room for alternative models. The basic problem
is the identification of the large contribution to the mass squared coming from the hadronic space-
time sheet with k = 107. This contribution could have the energy of classical color field as a
space-time correlate.

1. The assignment of the energy to the vacuum expectation value of sigma boson does not look
very promising since the very existence sigma boson is questionable and it does not relate
naturally to classical color gauge fields. More generally, since no gauge symmetry breaking is
involved, the counterpart of Higgs mechanism as a development of a coherent state of scalar
bosons does not look a plausible idea.

2. One can however consider the possibility of a Bose-Einstein condensate or of a more general
many-particle state of massive bosons possibly carrying color quantum numbers. A many-
boson state of exotic bosons at k = 107 space-time sheet having net mass squared

m2 = nm2
0(107) , n =

∑

i

ni

could explain the baryonic ground state mass. Note that the possible values of ni are pre-
dicted by p-adic thermodynamics with Tp = 1 .
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5.2.4 Glueballs cannot be in question

Glueballs [62, 63] define the first candidate for the exotic boson in question. There are however
several objections against this idea.

1. QCD predicts that lightest glue-balls consisting of two gluons have JPC = 0++ and 2++ and
have mass 1650 MeV [63]. If one takes QCD seriously, one must exclude this option. One
can also argue that light glue balls should have been observed long ago and wonder why their
Bose-Einstein condensate is not associated with mesons.

2. There are also theoretical objections in TGD framework.

i) Can one really apply p-adic thermodynamics to the bound states of gluons? Even if this
is possible, can one assume the p-adic temperature Tp = 1 for them if it is quite generally
Tp = 1/26 for gauge bosons consisting of fermion-antifermion pairs [F5, C5].

ii) Baryons are fermions and one can argue that they must correspond to single space-time
sheet rather than a pair of positive and negative energy space-time sheets required by the
glueball Bose-Einstein condensate realized as wormhole contacts connecting these space-time
sheets. This argument should be taken with a big grain of salt.

5.2.5 Do exotic colored bosons give rise to the ground state mass of baryon?

The objections listed above lead to an identification of bosons responsible for the ground state
mass, which looks much more promising.

1. Super-canonical gluons

TGD predicts exotic bosons and their super-conformal partners. The bosons created by the
purely bosonic part of super-canonical algebra [B2, B3, B4], whose generators belong to the rep-
resentations of the color group and 3-D rotation group but have vanishing electro-weak quantum
numbers. Their spin is analogous to orbital angular momentum whereas the spin of ordinary
gauge bosons reduces to fermionic spin. The super-partners of the super-canonical bosons have
quantum numbers of a right handed neutrino and have no electro-weak couplings. Recall that
super-canonical algebra is crucial for the construction of configuration space Kähler geometry.

Exotic bosons are single-sheeted structures meaning that they correspond to a single wormhole
throat associated with a CP2 type vacuum extremal. The assignment of these bosons to hadronic
space-time is an attractive idea. The only contribution to the mass would come from the genus
and g = 0 state would be massless in absence of topological mixing. In this case g = 0 bosons
could condense on the ground state and define the analog of gluonic contribution to the parton
sea. If they mix situation changes.

g = 1 unmixed super-canonical boson would have mass squared 9m2
0(k) (mass would be 700.7

MeV). For a ground state containing two g = 1 exotic bosons, one would have ground state
mass squared M2

0 = 18m2
0 corresponding to (m(n),m(p)) = (1160.8, 1155.6) MeV. Negative color

Coulombic conformal and color magnetic spin-spin splitting can reduce the mass of system as well
as. Electromagnetic Coulomb interaction energy can reduce the p-n mass splitting to a realistic
value.

1. Color magnetic spin-spin splitting for baryons gives a test for this hypothesis. The splitting
of the conformal weight is by group theoretic arguments of the same general form as that of
color magnetic energy and given by (m2(N), m2(∆)) = (18m2

0 −X, 18m2
0 + X) in absence of

topological mixing. n = 11 for nucleon mass implies X = 7 and m(∆) = 5m0(107) = 1338
MeV to be compared with the actual mass m(∆) = 1232 MeV. The prediction is too large
by about 8.6 per cent.
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If one allows negative color Coulombic conformal weight ∆s = −2 the mass squared reduces
by 2 units. The alternative is topological mixing one can have m2 = 8m2

0 instead of 9m2
0.

This gives m(∆) = 1240 MeV so that the error is only .6 per cent. The mass of topologically
mixed exotic boson would be 660.6 MeV and equals to m104. Amusingly, k = 104 happens
to corresponds to the inverse of αK for gauge bosons.

2. One must consider also the possibility that super-canonical gluons suffer topological mixing
identical with that suffered by say U type quarks in which the conformal weights would
be (5,6,58) for the three lowest generations. The ground state of baryon could consist of 2
gluons of lowest generation and one gluon of second generation (5 + 5 + 6 = 16). If mixing
is same as for D type quarks with weights (5,5,59), one can have only s = 15 state. It turns
out that this option allows to predict hadron masses with amazing precision if one assumes
correlation between hadron spin and its super-canonical particle content.

3. The conclusion is that a many-particle state of super-canonical bosons could be responsible
for the ground state mass of baryon. Also the baryonic spin puzzle caused by the fact that
quarks give only a small contribution to the spin of baryons, could find a natural solution
since these bosons could give to the spin of baryon an angular momentum like contribution
having nothing to do with the angular momentum of quarks.

2. The value of αs in super-canonical phase

If one takes seriously the reduction of the spectrum of αK and p-adic temperature to that
for the Chern-Simons coupling k [F5, C5], one ends up with the conclusion that particles which
correspond to single light-like wormhole throat (ordinary fermions and super-canonical bosons and
fermions) must correspond to k = 1 implying Tp = 1 and αK = 1/4. Ordinary gauge bosons would
correspond to pairs of light-like wormhole throats (wormhole contacts).

The large value of the Kähler coupling strength αK = 1/4 would characterize the hadronic
space-time sheet as opposed to αK = 1/104 assignable to the gauge bosons. Hence the color
gauge coupling characterizing their interactions would be strong. This would provide a precise
articulation for what the generation of the hadronic space-time sheet in the phase transition to a
non-perturbative or confining phase of QCD really means.

One can even guess the value of αs in the non-perturbative phase. The fact that Kähler action
is proportional to both electro-weak U(1) action and classical color YM action led already earlier
to the formula

1
αs

+
1

αU(1)
=

1
αK

.

holding true for ordinary gauge interactions. This formula leads to a prediction of αK if one
assumes that αs diverges at electron length scale p = M127 so that one has

1
αK

=
1

αU(1)(M127)
.

From the experimental value of αU(1)(M127) and formula αK = 1/4k one can deduce k = 26.
At the hadronic k = 107 space electro-weak interactions would be absent and classical U(1)

action should vanish. This is guaranteed if αU(1) diverges. This would give

αs = αK =
1
4

.

This would give also a quantitative articulation for the statement that strong interactions are
charge independent.
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The large value of αK suggests that the criterion for a phase transition increasing the value of
Planck constant [C9] and leading to a phase, where αK ∝ 1/hbar is reduced, could occur. This
would mean that super-canonical bosons would represent dark matter in a well-defined sense. Note
however that the fact that super-canonical bosons have no electro-weak interactions, could imply
their dark matter character even for the ordinary value of Planck constant.

An interesting side question is what the attribute ’non-perturbative’ could mean in p-adic
context. Could it mean that the contribution of color interactions to the conformal weight of
system consisting of quarks labelled by same prime p is of first order in p? This definition would
allow also ordinary color interactions to be non-perturbative in case of diagonal mesons.

3. A connection with hadronic string model

Hadronic string model provides a phenomenological description of the non-perturbative aspects
of hadron physics, and TGD was born also as a generalization of the hadronic string model. Hence
one can ask whether something resembling hadronic string model might emerge from the super-
canonical sector. TGD allows string like objects but the fundamental string tension is gigantic,
roughly a factor 10−8 of that defined by Planck constant. The hypothesis motivated by the p-adic
length scale hypothesis is that vacuum extremals deformed to non-vacuum extremals give to a
hierarchy of string like structures with string tension T ∝ 1/L2

p, Lp the p-adic length scale. The
challenge has been the identification of quantum counterpart of this picture.

The fundamental mass formula of the string model relates mass squared and angular momentum
of the stringy state. It has the form

M2 = kJ , k ' .9 GeV 2 . (86)

A more general formula is M2 = kn.
This kind of formula results from the additivity of the conformal weight (and thus mass squared)

if one constructs a many particle state from g = 1 super-canonical bosons with a thermal mass
squared M2 = M2

0 n, M2
0 = n0m

2
107 . The angular momentum of the building blocks has some

spectrum fixed by Virasoro conditions. If the basic building block has angular momentum J0 and
mass squared M2

0 , one obtains M2 = M2
0 J , k = M2

0 , J = nJ0. The values of n are even in old
fashioned string model for a Regge trajectory with a fixed parity. J0 = 2 implies the same result
so that basic unit might be called ”strong graviton”.

One can consider several candidates for the values of n0. In the absence of topological mixing
one has n0 = 9 for super-canonical gluons. The bound state of two super-canonical g = 1 bosons
with mass squared M2

0 = 16m2
107 (two units of color binding conformal weight) could be responsible

for the ground state mass of baryons. If topological mixing occurs and is same as for U type
quarks then also a bound state of 2 gluons of first generation and 1 gluon of second generation
gives M2

0 = 16m2
107.

The table below summarizes the prediction for the string tension in various cases. The identi-
fication of the basic excitations as many-particle states from from bound states of super-canonical
gluons with M2

0 = 16m2
107 predicts the nominal value of the .9 GeV with 3 per cent accuracy.

n0 5 9 16 18
M2

0 /GeV 2 .273 .490 0.872 0.982

Table 6. The prediction for the hadronic string tension for some values of the mass squared of
super-canonical particle used to construct hadronic excitations.

Pomeron [49] represented an anomaly of the hadronic string model as a hadron like particle
which was not accompanied by a Regge trajectory. A natural interpretation would be as a space-
time sheet containing valence quarks as a structure connected by color flux tubes to single structure.
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There is recent quite direct experimental evidence for the existence of Pomeron [39, 40, 48] in proton
photon collisions: Pomeron seems to leave the hadronic space-time sheet for a moment and collide
with photon after which it topologically condenses back to the hadronic space-time sheet. For a
more detailed discussion see [F5].

This picture allows also to consider a possible mechanism explaining spin puzzle of proton and
I have already earlier considered an explanation in terms of super-canonical spin [F5] assuming
that state is superposition of ordinary (J = 0, Jq = 1/2) state and (J = 2, Jq = 3/2) state in which
super-canonical bound state has spin 2.

4. Some implications

If one accepts this picture, it becomes possible to derive general mass formulas also for the
baryons of scaled up copies of QCD possibly associated with various Mersenne primes and Gaussian
Mersennes. In particular, the mass formulas for leptobaryons, in particular ”electro-baryons”, can
be deduced [F7]. Good estimates for the masses of the mesons and baryons of M89 hadron physics
are also obtained by simple scaling of the ordinary hadron masses by factor 512. Scaled up isospin
splittings would be one signature of M89 hadron physics: for instance, n-p splitting of 1.3 MeV
would scale up to 665.6 MeV.

5.2.6 What about mesons?

The original short-lived belief was that only baryons are accompanied by a pair of super-canonical
bosons condensed at hadronic k = 107 space-time sheet. By noticing that color magnetic spin-spin
splitting requires an additional contribution to the mass conformal weight of meson cancelled by
spin-spin splitting conformal weight in the case of pseudoscalar mesons to first order in p, one ends
up with the conclusion that also mesons could possess the hadronic space-time sheet.

It however turns out that the contribution of super-canonical massive boson is necessarily only
in the case of π− ρ system and produces mere nuisance in the case of heavier mesons. The special
role of π − ρ system could be understood in terms of color confinement which would make pion
k = 107 tachyon without the presence of additional mass squared.

The super-canonical contribution must correspond to a conformal weight of 5 units in the case
of pion and thus to single super-canonical boson with m2 = 5m2

107 instead of 9m2
107 as for g = 1

super-canonical bosons. A possible interpretation is in terms of g = 0 boson which has suffered
a topological mixing. That 5 units of conformal weight result also in the topological mixing of
u and d quarks supports this option and forces to ask whether also super-canonical topological
mixing is same inside baryons and mesons. If it is same for U type quarks and super-canonical
bosons one has (s1, s2, s3) = (5, 6, 58) for the super-canonical gluons. As noticed, SSC = 16 for
baryons is obtained if one has a bound state of 2 bosons of first generation and one boson of second
generation giving sSC = 5 + 5 + 6 = 16. One can wonder how tightly the super-canonical gluons
are associated with baryonic valence quarks.

5.3 Pseudoscalar meson masses

The requirement that all contributions to the meson masses have p-adic origin allows to fix the
model uniquely and also constraints on the value of the parameter Ye emerge. In the following
only pseudoscalar mesons will be considered.

5.3.1 Light pseudoscalar mesons as analogs of Goldstone bosons

Fractally scaled up versions of light quarks allow a rather simple model for hadron masses. In the
old fashioned SU(3) based quark model η meson is regarded as a combination uu + dd− 2ss. The
basic observation is that η mass is rather precisely 4 times the mass of π whereas the mass of ω
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is very near to ρ mass. This suggests that η results by a fractal scaling of quark masses obtained
by the replacement k(q) = 113 → 109 for the quarks appearing in η. This inspires the idea that
mesonic quarks are scaled up variants of light quarks and at least light pseudoscalar mesons are
almost Goldstone bosons in the sense that quark contribution to the mass is as large as possible
but smaller than meson mass. This idea must of course be taken as an interesting ansatz and in
the end of the chapter it will be found that this idea might work only in the case of pion and kaon
systems.

5.3.2 Quark contributions to meson masses

The following table summarizes the predictions for quark contributions to the masses of mesons
assuming k(q) depending on meson and assuming Ye = 0 guaranteing maximum value of top quark
mass.

Meson scaled quarks mq(M)/MeV mexp/MeV
π0 d113, u113 140.0 135.0
π+ d113, u113 140.0 139.6
K0 d114, s109 495.5 497.7
K+ u114, s109 486.3 493.7
η u109, d109, s109 522.2 548.9
η′ u107, d107, s107, c107 1144.2 957.6

η′ = BSC +
∑

i qiqi q118 959.2 957.6
ηc c104 3098 2980
D0 c105, u113 1642 1865
D+ c105, d113 1654 1870
Υ b103 10814 9460
B b104, d104, u104 5909 5270

Table 7. Summary of the model for contribution of quarks to the masses of mesons containing
scaled up u,d, and s quarks. The model assumes the maximal value of CP2 mass allowed by η′

mass and the condition Ye = 0 favored by top quark mass.

1. The quark contribution to pion mass is predicted to be 140 MeV, which is by few percent
above the pion mass. Ordinary color interactions between pionic quarks can however reduce
the conformal weight of pion by one unit. The reduction of CP2 mass scaled cannot be
considered since it would reduce top quark mass to 163.3 MeV which is slightly below the
favored range of values [58].

2. The success of the fit requires that spin-spin splitting cancels the mass of super-canonical bo-
son in a good approximation for pseudoscalar mesons. This would be in accordance with the
Goldstone boson interpretation of pseudoscalar mesons in the sense that color contribution
to the mass from k = 107 space-time sheet vanishes in the lowest p-adic order.

3. In the case of η resp. η′ meson it has been assumed that the states have form (uu+d−2ss)/
√

6
resp. (uu + d + ss)/

√
3.

4. B mesons have anomalously large coupling to η′K and η′X [55], which indicates an anoma-
lously large coupling of η′ to gluons [56]. The interpretation has been in terms of a consid-
erable mixing η′ with gluon-gluon bound state.

η′ mass is only 2.5 per cent higher than the mass 4m107 of super-canonical boson BSC

associated with the hadronic space-time sheet of hadron. Large mixing scenario is however
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not consistent with the existence of Φ with nearly the same mass. This encourages to
consider the possibility that η′ corresponds to a super-canonical boson BSC plus quark pair
with k(d) = k(u) = k(s) = k(c) = 118 with maximal mixing. In this case the contribution
of quarks to the mass would be 25.1 MeV and one would have m(η′) = 959.2 MeV which
coincides with the actual mass with 1 per mille accuracy. Note that this model predicts
identical couplings to various quark pairs as does also the model assuming that η′−Φ system
is singlet with respect to flavor SU(3) (having no fundamental status in TGD).

It is clear from the above table that the quark contributions to the masses of π, η′ and B are
slightly above the meson masses. In the case of B the discrepancy is largest and about 12 per
cent. If one assumes that all contributions to the mass have p-adic origin, they are necessarily
non-negative.

1. In the case of diagonal mesons the ordinary color interactions can reduce the contribution of
quark masses to the mass of the meson. In the case of η′ baruyonic super-canonical gluon
BSC could resolve the problem.

2. In the case of non-diagonal mesons the only possible solution of the problem is that Ye > 0
holds true so that mass scale is reduced by a factor 1− P =

√
5/(5 + Ye) giving Ye ' .056.

The prediction for top quark mass is reduced by 1.1 per cent to 167.2 GeV which belongs to
the allowed range [58].

3. In the case of B meson one is forced to assume kb = kd = ku = 104 although it would be
possible to achieve smaller quark contribution by an alternative choice. This choice explains
the observed very small isospin splitting and diagonality allows the ordinary color interaction
to reduce the quark contribution to the B meson mass.

4. At the end of the chapter an alternative scenario in which quark masses give in good approx-
imation only the masses of pion and kaon will be considered.

5.3.3 An example about how the mesonic mass formula works

The mass of the Bc meson (bound state of b and c quark) has been measured with a precision by
CDF (see the blog posting by Tommaso Dorigo [59]) and is found to be M(Bc) = 6276.5 ± 4.8
MeV. Dorigo notices that there is a strange ”crackpottian” co-incidence involved. Take the masses
of the fundamental mesons made of cc (Ψ) and bb (Υ), add them, and divide by two. The value of
mass turns out to be 6278.6 MeV, less than one part per mille away from the Bc mass!

The general p-adic mass formulas and the dependence of kq on hadron explain the co-incidence.
The mass of Bc is given as m(Bc) = m(c, kc(Bc)) + m(b, kb(Bc)), whereas the masses of Ψ and
Υ are given by m(Ψ) =

√
2m(c, kΨ) and m(Υ) =

√
2m(b, kΥ). Assuming kc(Bc) = kc(Ψ) and

kb(Bc) = kb(Υ) would give m(Bc) = [m(Ψ) + m(Υ)]/
√

2 which is by a factor
√

2 higher than the
prediction of the ”crackpot” formula. kc(Bc) = kc(Ψ) + 1 and kb(Bc) = kb(Υ) + 1 however gives
the correct result.

As such the formula makes sense but the one part per mille accuracy must be an accident in
TGD framework.

1. The predictions for Ψ and Υ masses are too small by 2 resp. 5 per cent in the model assuming
no effective scaling down of CP2 mass.

2. The formula makes sense if the quarks are effectively free inside hadrons and the only effect of
the binding is the change of the mass scale of the quark. This makes sense if the contribution
of the color interactions, in particular color magnetic spin-spin splitting, to the heavy meson
masses are small enough. Ψ and ηc correspond to spin 1 and spin 0 states and their masses
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by 3.7 per cent (m(ηc) = 2980 MeV and m(Ψ) = 3096.9) so that color magnetic spin-spin
splitting is measured using per cent as natural unit.

5.4 Baryonic mass differences as a source of information

The first step in the development of the model for the baryon masses was the observations that B−n
mass differences can be understood if baryons are assumed to contain scaled versions of strange
and heavy quarks. The deduction of precise values of k(q) is however not quite straightforward
since the color magnetic contribution to the mass affects the situation. Thus a working hypothesis
worth of studying is that ground state contribution is same for all baryons and that for spin 1/2
baryons quark contribution to the mass added to this contribution is near as possible to the real
mass but smaller than it.

The purpose of the following explicit is to to convince the reader that baryon mass difference
can be indeed understood in terms of quark mass differences.

1. Λ− n mass difference is 176 MeV and (k(s) = 111, k(d) = 114) for λ would predict the mass
difference m(λ)−m(n) = mq(λ)−mq(n), where one has mq(λ) = m(s111)+

√
2m(d114)−m(n),

mq(n) =
√

m(u113)2 + 2m(d113)2). The prediction equals to 141 MeV. It is possible to
achieve smaller discrepancy but more precise considerations support this identification. Note
that the spin-spin interaction energy is same if u and d quark form the paired quark system
which is in J = 0 or J = 1 state so that the mass difference indeed can be regarded as quark
mass difference.

2. Σ−n mass difference is 257 MeV. If sigma contains s111, u114 and d114, the mass difference is
predicted to be mq(Σ)−mq(n), mq(Σ) = m(s111) +

√
2m(d114) and comes out as 228 MeV.

3. If Ξ contains two s110 quarks and u113 (d113), he mass difference comes out as 351 MeV to
be compared with the experimental value 381 MeV.

4. Even single hadron, such as Ω, could contain several scaled up variants of s quark. s108+2s111

decomposition would give mass difference 718 MeV to be compared with the real mass
difference 734 MeV.

5. For Λc the mass is 2282 MeV. For k(c) = 105 instead of k(c) = 104 the predicted Λc − n
mass difference is 1341 MeV whereas the experimental difference is 1344 MeV.

6. For Λb the mass is 5425 MeV. For k(b) = 104 instead of k(b) = 103 the predicted Λb − n
mass difference is 4403 MeV. The experimental difference is 4485 MeV.

Baryon s content ∆m/MeV ∆mexp/MeV
Λ s111 141 176
Σ s110 228 257
Ξ s110 + s111 351 381
Ω s108 + 2s110 718 734
Λc c105, d112, u112 1341 1344
Λb b105, u106, d106 4403 4485

Table 8. Summary of the model for the quark contribution to the masses of baryons containing
strange quarks deduced from mass differences and neglecting second order contributions to the
mass. ∆m denotes the predicted B−n mass difference m(B)−m(n). The subscript ’exp’ refer to
experimental value of the quantity in question.
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5.5 Color magnetic spin-spin splitting

Color magnetic hyperfine splitting makes it possible to understand the ρ−π, K?−K, ∆−N , etc.
mass differences [37]. That the order of magnitude for the splittings remains same over the entire
spectrum of hadrons serves as a support for the idea that color fluxes are feeded to k = 107 space-
time sheet. This would suggest that color coupling strength does not run for the physical states
and runs only for the intermediate states appearing in parton description of the hadron reactions.
A possible manner to see the situation in terms of intermediate states feeding color gauge flux to
space-time sheets with k > 107 so that the additive color Coulombic interaction conformal weights
s(qi, qj) would depend only on the integers k(qi), k(qj). It will be found that the dependence is
roughly of form 1/(k(qi) + k(qj)), which brings in mind a logarithmic dependence of αs on p-adic
length scales involved.

There are two approaches to the problem of estimating spin-spin splitting: the first one is based
on spin-spin interaction energy and the second one on spin-spin interaction conformal weight. The
latter one turns out to be the only working one.

5.5.1 The model based on spin-spin interaction energy fails

Classical model would apply real number based physics to estimate the splittings and calculate
color magnetic interaction energies. Standard QCD approach predicts that the color magnetic
interaction energy is of form

∆E = S
∑

pairs

s̄i · s̄j

mimjr3
ij

. (87)

The mass differences for hadrons allow to deduce information about the nature of color magnetic
interaction and make some conclusions about the applicability this model.

1. For mesons the spin-spin splitting various from 630 MeV for ρ − π system to 120 MeV
Ψ − ηc excludes the classical model predicting that the splitting should be proportional to
1/m(q1)m(q2) (variation by a factor 2113−106 = 128 instead of 5 would be predicted if the
size of the hadron remains same). Also the predicted ratio of K∗ − K splitting to ρ − π
splitting would be 1/4 rather than .63. The ratio of η − ω splitting to ρ− π splitting would
be 1/16 rather than .34. The ratio of Φ− η′ splitting to ρ− π splitting would be 1/32 ' .03
instead of .11.

The inspection of the spin-spin interaction energies would suggest that the interaction energy
scales E(i, j) obey roughly the formula

E(i, j) ∼ 5
2 × 1

(∆k(q1)+∆k(q2))
=

5× 1
log2{[L(113)/L(k(q1)]×[L(113)/L(k(q2)]}

∆k(q) = 113− k(q)

rather than being proportional to 2−k(q1)−k(q1). The hypothesis that p-adic length scale
L(k) of order CP2 length scale range corresponds to the size of elementary particle horizon
associated with wormhole contacts feeding gauge fluxes of the CP2 type extremal representing
particle to the larger space-time sheet with p ' 2k might allow to understand this dependence.

2. ∆ − N , Σ∗ − Σ, and Ξ∗ − Ξ mass differences are 291 MeV, 194 MeV, 220 MeV. If strange
quark inside Σ corresponds to k = 110, the ratio of Σ∗ − Σ splitting to ∆ − N splitting is
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predicted to be by a factor 1.17 larger than experimental ratio. Ξ∗ − Ξ splitting assuming
k(s) = 109 the ratio would be .19 and quite too small. Assuming that s, u, d quarks have
more or less same mass, the model would predict reasonably well the ratios of the splittings.
Either the idea about scaled up variants of s is wrong or the notion of interaction energy
must be replaced with interaction conformal weight in order to calculate the effects of color
interactions to hadron masses.

5.5.2 The modelling of color magnetic spin-spin interaction in terms of conformal
weight

The model based on the notion of interaction conformal weight generalizes the formula for color
magnetic interaction energy to the p-adic context so that color magnetic interaction contributes
directly to the conformal weight rather than rest mass. The effect is so large that it must be
p-adically first order (the maximal contribution in second order to hadron mass would be however
only 224 MeV) and the generalization of the mass splitting formula is rather obvious:

∆s =
∑

pairs

Sij s̄i · s̄j . (88)

The coefficients Sij depend must be such that integer valued ∆s results and CP2 masses are
avoided: this makes the model highly predictive. Coefficients can depend both on quark pair
and on hadron since the size of hadron need not be constant. In any case, very limited range of
possibilities remains for the coefficients.

This might be understood if the color flux carrying JAB connecting quark to k = 107 hadronic
space-time sheet is also characterized by a value of k ≥ 113. This fixes practically completely the
model in the case of mesons. If the interaction strengths sc(i, j) characterizing color Coulombic
interaction conformal weight between two quarks depends only on the flux tube pair connecting
the quarks via k = 107 space-time sheet via the integers k(qi), the model contains only very few
parameters.

5.5.3 The modelling of color magnetic- spin-spin splitting in terms of super-canonical
boson content

The recent variant for the model of the color magnetic spin-spin splitting replacing energy with
conformal weight is considerably simpler than the earlier one. Still one can argue that a model using
perturbative QCD as a format is not the optimal one in a genuinely non-perturbative situation.

The explicit comparison of the super-canonical conformal weights associated with spin 0 and
spin 1 states on one hand and spin 1/2 and spin 3/2 states on the other hand is carried out at the
end of the chapter. The comparison demonstrates that the difference between these states could
be understood in terms of super-canonical particle contents of the states by introducing only single
additional negative conformal weight sc describing color Coulombic binding . sc is constant for
baryons(sc = −4) and in the case of mesons non-vanishing only for pions (sc = −5) and kaons
(sc = −12). This leads to an excellent prediction for the masses also in the meson sector since
pseudoscalar mesons heavier than kaon are not Golstone boson like states in this model.

The correlation of the spin of quark-system with the particle content of the super-canonical
sector increases dramatically the predictive power of the model since the allowed conformal weights
of super-canonical bosons are (5,6,58). One can even consider the possibility that also exotic
hadrons with different super-canonical particle content exist: this means a natural generalization
of the notion of Regge trajectories. This description will be summarized at the end of the chapter.
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5.6 Color magnetic spin-spin interaction and super-canonical contribu-
tion to the mass of hadron

Since k = 107 contribution to hadron mass is always non-negative, spin-spin interaction confor-
mal weight and also color Coulombic conformal weight must be subtracted from some additional
contribution both in the case of pseudo-scalars and spin 1/2 baryons.

5.6.1 Baryonic case

In the case of baryons the additional contribution could be identified as a 2-particle state of super-
canonical bosons with mass squared 9m2

107 in case of baryons. The net mass is sCS = 18m2
107.

The study of N − ∆ system shows that color Coulombic interaction energy for single super-
canonical structural unit corresponds to ∆sSC = −2 in the case of nucleon system so that one
has sSC = 18 → 16. If topological mixing for super-canonical bosons is same as for U type
quarks with conformal weights (5,6,58), the already discussed three-particle state of would give
sSC = 5 + 5 + 6 = 16.

The basic requirement is that the the sum of spin-spin interaction conformal weight and sCS

reduces to the conformal weight corresponding to the difference of nucleon mass and quark contri-
bution to 774.6 MeV and correspond to s = 11.

One might hope that the situation could be the same for all baryons but it is safer to introduce
an additional color Coulombic conformal weight sc(B) which vanishes for N − ∆ system and
hope that it is small as suggested by the fact that quark contributions explain quite satisfactorily
the mass differences of baryons. This conformal weight could be assigned to the interaction of
quarks via super-canonical gluons and would represent a correction to the simplest model. Strictly
speaking, the term ”color Coulombic” should be taken as a mere convenient letter sequence.

5.6.2 Pseudo scalars

In the case of pseudoscalars the situation is not so simple. What is clear that quark masses
determine the meson mass in good accuracy.

In this case sCS can be determined uniquely from the requirement that in case of pion it is
cancelled the conformal weight characterizing ρ− π color magnetic spin-spin splitting:

sSC = |∆s(π, spin− spin)| . (89)

This gives sSC = 21/4 ' 5.
The interpretation as a bound state of super-canonical g = 1 and g = 0 gluon would require

binding conformal weight by 4 units which looks somewhat strange. The masslessness of g = 0
gluond does not support the formation of this kind of bound state. An alternative option is in
terms of topological mixing in which case g = 0 boson should receive 5 units of conformal weight.

Explicit calculations demonstrate that for mesons heavier than pion the role of sc is to com-
pensate sSC . This suggests that the boson of lowest generation is present only inside π− ρ system
and prevents the large and negative color magnetic spin-spin interaction conformal weight to make
pion a tachyon. The special role of pion could be understood in terms of a phase transition to
color confining phase. Note however that the mass of η′ could be understood by assuming baryonic
super-canonical boson of conformal weight sSC = 16 and fully mixed k = 118 quarks.

5.6.3 Formulas for sc(H) for mesons

For option I one has sSC = 5 for all mesons. For option II sCS vanishes for all mesons except π
and ρ. For option I one obtains the formula

55



sc(M) = −sSC −∆s(M0, spin− spin) = −5 + |∆s(M0, spin− spin)| .

(90)

For option II one has

sc(M) = −5 + |∆s(M0, spin− spin)| , M = π, ρ ,

(91)
sc(M) = |∆s(M0, spin− spin)| , M 6= π, ρ . (92)

M0 refers to the pseudoscalar.

5.6.4 Formulas for sc(H) for baryons

In the case of spin 1/2 baryons the requirement that the sum of color Coulombic and color magnetic
conformal weights is same as for nucleons fixes the values of sc(B):

sc(B) = s0 − sSC −∆s(B1/2, spin− spin) = −5 + |∆s(B1/2, spin− spin)| ,

sSC = 16 ,

s0 = S(m(n)−mq(n), 107) ,

mq(n) =
√

2m2
d + m2

u ,

S(x, 107) ≡ [(
x

m107
)2] . (93)

s0 = 11 corresponds to the contribution difference of (say) neutron mass and quark contribution
to the nucleon mass. sCS corresponds to the conformal weight due to super-canonical bosons. In
the defining formula for S(x, 107) [x] denotes the integer closest to x.

5.6.5 The conformal weights associated with spin-spin splitting

The general formula for the spin-spin splitting allowing to determine the parameters Sij from the
masses of a pair H? −H of hadrons (say ρ− π or ∆−N). The parameters can be deduced from
the observation that the mass difference m(M∗)−m(M) for mesons corresponds to the difference
of spin-splitting contributions to the mass:

∆s(M∗)−∆s(M) = S(m(M∗)−m(M), 107) . (94)

For baryons one has

∆s(B∗)−∆s(B) = X1 −X0 ,

X1 = S(m(B∗)−mq(B), 107) = ,

X0 = S(m(B)−mq(B), 107) . (95)

Here mq(B) = mq(B∗) denotes the quark contribution to the nucleon mass. The possibility to
understand the mass differences of spin 1/2 baryons in terms of differences formq(B) inspires the
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hypothesis that X0 is constant also for baryons (it vanishes for mesons). If so X0 can be determined
from neutron mass as

X0 = S(m(n)−mq(n), 107) ,

mq(n) =
√

2m2
d + m2

u) . (96)

Here mq(n) is the contribution of quarks to neutron mass.
These formulas are not identical with those used in the earlier calculations and the difference

is due to the fact that k = 107 contributions and quark contributions are calculated separately
unless quarks correspond k = 107. The formula allows to calculate second order contribution to
the mass splitting.

p-Adicization brings in additional constraints. The requirement that the predicted mass of
spin 1 boson and spin 3/2 fermion is not larger than than the experimental mass can pose strong
constraints the scaling factor

√
5/(5 + Ye) in the case of non-diagonal hadrons unless one is willing

to modify the model for spin-spin splittings. It was already found that in case of ρ−π system this
implies that top quark mass is at the lower limit of the allowed mass interval. One cannot take
these constraints so seriously as the constraints that quark mass contribution is lower than meson
mass in the case the quarks do not correspond to k = 107.

5.6.6 General mass formula

The general formula for the mass of hadron can be written as a sum of perturbative and non-
perturbative contributions as

m(H) = mP + mNP . (97)

Preceding considerations lead to a simple formula for the non-perturbative contribution mNP

to the masses of spin 0 and spin 1 doublet of mesons:

mNP (M) =
√

sNP (M)×m107 ,

sNP (M0) = 0 ,

sNP (M1) = S(m(M∗)−m(M), 107) . (98)

For spin 1/2 and 3/2 doublet of baryons one has

mNP (B) =
√

sNP (B)×m107 ,

sNP (B1/2) = S(mn −
√

2m2
d + m2

u, 107) ,

sNP (B3/2) = S(m(B∗)−mq(B), 107) . (99)

Perturbative contribution mP contains in the lowest order approximation only the contribution
of quark masses. In the case of diagonal mesons also a contribution from the ordinary color-
Coulombic force and color magnetic spin-spin splitting can be present. For heavy mesons this
contribution seems necessary since pure quark contribution is exceeds by few per cent the mass of
meson.
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5.6.7 Spin-spin interaction conformal weights for baryons

Consider now the determination of Sij in the case of baryons. The general splitting pattern for
baryons resulting from color Coulombic, and spin-spin interactions is given by the following table.
The following equations summarize spin-spin splittings for baryons in a form of a table.

baryon J J12 ∆sspin

N 1
2 0 − 3

4Sd,d

∆ 3
2 1 3

4Sd,d

Λ 1
2 0 − 3

4Sd,d

Σ 1
2 0 − 3

4Sd,d

Σ∗ 1
2 0 1

4Sd,d

+ 1
2Sd,s

Ξ 1
2 0 − 3

4Ss,s

Ξ∗ 1
2 0 1

4Ss,s

+ 1
2Sd,s

Ω 3
2 1 3

4Ss,s

(100)

Spin-spin splittings are deduced from the formulas

∆sspin = Sq1,q)(
J12(J12 + 1)

2
− 3

4
) ,

+
1
4
(Sq1,q3 + Sq2,q3)(J(J + 1)− J12(J12 + 1)− 3

4
) ,

(101)

where J12 is the angular momentum eigenvalue of the ’first two quarks’, whose value is fixed by
the requirement that magnetic moments are of correct sign.

The masses determine the values of the parameters uniquely if one assumes that color binding
energy is constant as indeed suggested by the very notion of M107 hadron physics. The requirement
is that the mass difference squared for ∆−N , Σ∗ − Σ, and Ξ∗ − Ξ come out correctly.

Consider now the values of Sij for the models assuming k = 113 light quarks and dynamical
k(s).

1. For N −∆ system the equation is

Sd113,d113 =
1
3
S(m(∆)−mq(N), 107)− S(m(N)−mq(N), 107) .

Here mq(N) refers to the quark contribution to the baryon mass.

2. For Σ∗ − Σ system the basic equation can be written as

Sd114,s110 = 2[S(m(Σ∗)−mq(Σ), 107)− S(m(Σ)−mq(Σ), 107)− S(d114, d114)] .
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One must make some assumption in order to find a unique solution. The simplest assumption
is that Sd114,d114 = Sd114,s110 . This implies

Sd114,d114 =
1
3
[S(m(Σ∗)−mq(Σ), 107)− S(m(Σ)−mq(Σ), 107)] .

3. In the case of Ξ∗ − Ξ system the equation is

Ss110,s110 = −1
2
Sd113,s110 + [S(m(Ξ∗)−mq(Ξ), 107)− S(m(Ξ)−mq(Ξ), 107)] .

If one assumes Ss110,s110 = Sd113,s110 one obtains

Ss110,s110 =
1
3
[S(m(Ξ∗)−mq(Ξ), 107)− S(m(Ξ)−mq(Ξ), 107)] .

The resulting values of the parameters characterizing baryonic spin-spin splittings are in the
table below. The parameters rela

Sd113,d113 Sd114,d114 Sd114,s110 Ss110,s110 Sd113,s110

7 6 6 8
3

8
3

(102)

The mass squared unit used is m2
0 and k = 107 defines the p-adic length scale used. The elements

of Si,j between different p-adic primes are assumed to be vanishing. The matrix elements are quite
near to each other which raises the hope that the model indeed makes sense.

Color Coulombic binding conformal weights are given by the expression sc = −5+|∆s(B1/2, spin−
spin)|. The weights are given in the following table

baryon N Σ Ξ
sc

1
4 − 1

2 −3

(103)

Some remarks are in order.

1. A good sign is that the values of sc are small as compared to the value of sCS = 18 in all
baryons so that only a small correction is in question.

2. The magnitude of sc increases with the mass of baryon which does not conform with the
expectations raised by ordinary QCD evolution. Could this mean that asymptotic freedom
means that the color interaction between quarks occurs increasingly via super-canonical
gluons? For N −∆ system the actual value of sc should vanish.

3. One might worry about the fact the color binding conformal weights are not integral valued.
The total conformal weights determining the mass squared are however integers.

5.6.8 Spin-spin interaction conformal weights for mesons

The values of mesonic interaction strengths Si,j can in principle deduced from the observed mass
splittings. The following equations summarize the spin-spin splitting pattern for mesons in a form
of table.
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meson ∆sspin

π − 3
4Sd,d

ρ 1
4Sd,d

η − 3
4Sd,d

ω 1
4Sd,d

K±,K0(CP = 1) − 3
4Sd,s

K0(CP = −1) − 3
4Sd,s

K∗,±,K∗,0(CP = 1) 1
4Sd,s

K∗,0(CP = −1) 1
4Sd,s

η′ − 3
4Ss,s

Φ 1
4Ss,s

ηc − 3
4Sc,c

Ψ 1
4Sc,c

D±, D0(CP = 1) − 3
4Sd,c

D0(CP = −1) − 3
4Sd,c

D∗,±, D∗0(CP = 1) 1
4Sd,c

D∗0(CP = −1) 1
4Sd,c

(104)

Consider the spin-spin interaction for mesons.

1. For ρ− π system one has

Sd113,d113 = s(m(ρ)−mq(π)) .

Using s(ρ) = 14 and s(π) = 0 gives S(d113, d113) = 13.

2. ω − η system one obtains

Sq109,q109 = S(m(ω)−mq(η), 107)

3. K? −K-splitting gives Sd114,s109 = S(m(K∗)−mq(K), 107).

4. Φ− η′ splitting gives Sq107,q107 = S(m(Φ)−mq(η′), 107).

5. D∗ −D mass splitting gives Sd113,c105 = S(m(D∗)−mq(D), 107).

6. Ψ− ηc mass difference gives Sc104,c104 = s(m(Ψ)−mq(ηc), 107).

The results for the spin-spin interaction strengths Sij are summarized in the table below. q109

refers to u, d, and s quarks.

Sd113,d113 Sq109,q109 Sq107,q107 Sd114,s109 Sd113,c105 Sc104,c104

7 1 0 3 2 0

(105)

Note that interaction strengths tend to be weaker for mesons than for baryons. For scaled up
quarks the value of interaction strength tends to decrease and is smaller for non-diagonal than
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diagonal interactions. Since the values of k(qi) maximize the quark contribution to hadron masses,
the interaction strength produce a satisfactory mass fit for hadrons with errors of not larger than
about five cent.

The color Coulombic binding conformal weights for meson states are given in the following
table:

meson π K η η′ D ψ
sc(I) +1/4 −4− 1/4 −6 −3− 1/4 −4− 1/2 −5
sc(II) 1/4 3/4 1 1 + 3/4 1/2 0

(106)

For option I g = 1 boson is present in all mesons. The magnitude of sc increases with the mass of
the meson and more or less compensates sCS = 5. This forces to consider the possibility that only
pion contains the super-canonical boson compensating the large and negative spin-spin interaction
conformal weight making the state tachyon otherwise. For option II sc is relatively small and
positive for this option.

5.7 Summary about the predictions for hadron masses

The following tables summarize the predictions for baryon masses following from the proposed
model with optimal choices of the integers k(q) characterizing the mass scales of quarks and
requiring that the predicted isospin splittings are of same order than the observed splittings. This
condition is non-trivial: for instance, in case of B meson the smallness of splitting forces the
condition k(b) = k(d) = k(u) = 104 so that mass squared is additive and the large contribution of
b quark minimizes the isospin splitting.
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5.7.1 Meson masses assuming that all pseudoscalars are Goldstone bosons

Meson quarks mpr(M)/MeV mexp/MeV
π0 BSC,1 + d113, u113 140.0 135.0
π+ d113, u113 140.0 139.6
ρ0 d113, u113 756 772
ρ+ d113, u113 756 770
K0 d114, s109 496 498
K+ u114, s109 486 494
K0∗ d114, s109 896 900
K+∗ u114, s109 892 891

η u109, d109, s109 522 549
ω0 u109, d109, s109 817 783
η′ u107, d107, s107, c107 1144 958
Φ u107, d107, s107, c107 1144 1019
ηc c104 3098 2980
D0 c105, u113 1642 1865
D+ c105, d113 1655 1870
D∗0 c105, u114 1971 2007
D∗+ c105, d114 1985 2010
F c105, s(106) 1954 2021
Υ b103 10814 9460
B b104, d104, u104 5909 5270

Table 9. The prediction of meson masses. The model assumes the maximal value of CP2 mass
allowed by η′ mass and the condition Ye = 0 favored by top quark mass.

In the case of meson masses the predictions for masses are not so good as for baryons. Errors
are at worst about 5 per cent. For non-diagonal mesons the predicted masses are smaller than
actual masses and in the case of kaons excellent. Also the prediction of pion mass is good but
about 5 per cent too large. In the case of diagonal mesons ordinary color interactions could reduce
the predicted masses in case that they are larger than actual ones.

5.7.2 Meson masses assuming that only pion and kaon are Goldstone bosons

The Golstone boson interpretation does not seem completely satisfactory. In order to make progress
one can check whether the masses associated with super-canonical bosons could serve as basic units
for pseudoscalar and vector boson masses. A more general fit would be based on the use of fictive
boson B107 with mass m107 as a basic unit in k = 107 contribution to the mass. The table below
gives very accurate formulas for the meson masses in terms of the scale m107 and quark contribution
to the masses.
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Meson quarks mpr(M)/MeV mexp/MeV
π0 d113, u113 140.0 135.0
π+ d113, u113 140.0 139.6
ρ0 6B107 + d113, u113 758 772
ρ+ 6B107 + d113, u113 758 770
K0 d114, s109 496 498
K+ u114, s109 486 494
K0∗ 3B107 + d114, s109 901 900
K+∗ 3B107 + u114, s109 891 891

η BSC,1 + u118, d118, s118 548 549
ω0 2BSC,1 + u118, d118, s118 803 783
η′ 2BSC,1 + BSC,2 + q118 959 958
Φ 2BSC,1 + BSC,2 + q118 959 1019
ηc 2BSC,1 + c105 2929 2980
Ψ 3BSC,1 + c105 3098 3100
D0 2mSC,1 + c106, u118 1853 1865
D+ 2mSC,1 + c106, d118 1850 1870
D∗0 3mSC,1 + c106, u118 2019 2007
D∗+ 3mSC,1 + c106, d118 2016 2010
F 3mSC,2 + c105, s(113) 2010 2021
Υ BSC,3 + b104 9441 9460

B± 3BSC,2 + b105, d105, u105 5169 5270

Table 10. Table demonstrates that scalar and vector meson masses can be effectively regarded
as expressible in terms of quark contribution and contribution coming from many particle states
of super-canonical bosons BSC,k, k = 1, 2, 3, with conformal weights (5,6,28) associated also with
U type quarks. B107 denotes effective super-canonical boson with mass conformal weight 1 and
mass m107. Ye = 0 favored by top quark mass is assumed.

The table demonstrates following.

1. For mesons heavier than kaons, the masses are effective sums of masses for quarks and many-
particle state formed by super-canonical bosons allowed by the topological mixing of U type
quarks.

2. For π − ρ resp. K − K∗ systems the masses can be expressed using effective 7B107 state
state resp. 3B107 state. Second order contribution to the conformal weight from the super-
canonical color interaction can explain the too small mass of ρ and too large mass of π if it
interferes with the corresponding quark mass contribution.

3. For pseudo-scalars heavier than kaon the mass of the super-canonical meson is not completely
compensated by spin-spin splitting for the pseudoscalar state so that Goldstone boson inter-
pretation does not make sense anymore. In the case of heavy mesons the predicted masses
of pseudoscalars are slightly below the actual mass.

4. The predicted masses are not larger than actual masses (ω0 is the troublemaker) if one
assumes 2.5 per cent reduction of CP2 mass scale for which top quark mass is at the lower
bound of the allowed mass range.
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5. Color magnetic spin-spin splitting parameters can be deduced from the differences of super-
canonical conformal weights for pseudoscalar and spin one boson. There is however no
absolute need for this perturbative construct.

6. One can consider the possibility that the super-canonical boson content is actual and cor-
relates with the spin of quark-antiquark system for mesons heavier than kaons. The point
would be that the representability in terms of super-canonical bosons would make the model
for the color magnetic spin-spin splittings highly predictive. This interpretation makes sense
in the case of π − ρ and K − K∗ systems only if one introduces negative color Coulombic
conformal weight sc. For heavier mesons only this contribution would be second order in p
which is more or less consistent with the view about color coupling evolution. π − ρ would
correspond to B1 (s = 5) and 2B2 (s = 12) ground states with color Coulombic conformal
weight sc = −12. K −K∗ would correspond to 2B2 (s = 12) and 3B1 with sc = −12. The
presence of ground state bosons saves π and K from becoming tachyons.

Whatever the correct physical interpretation of the mass formulas represented by the table
above is, it is clear that m107 defines a fundamental mass scale also for meson systems.

5.7.3 Baryon masses

One can ask whether the representability of spin-spin splitting in terms of super-canonical confor-
mal boson content is possible also in the case of baryons so that perturbative formulas altogether
would not be necessary. The physical interpretation would be that the total spin of baryonic quarks
correlates with the content of super-canonical bosons. The existence of this kind of representation
would be one step towards understanding of also spin-spin splitting from first principles.

This is indeed the case if one accepts negative color Coulombic conformal weight sc = −4. Spin
1/2 ground states would correspond to 3B1 with conformal weight s = 15, one B1 for each valence
quark. Spin 3/2 states would correspond to 5B1 with s = 25 in the case of ∆, to 2B1 + B2 in the
case of Σ∗ with s = 23, and to B1 + 3B2 with s = 24 in case of Ξ∗.

Baryon quarks mpr(B)/MeV mexp/MeV

p 3B1 + u113, d113 942.3 938.3
n 3B1 + u113, d113 949.8 939.6
∆++ 5B1 + u113 1230 1231
∆+ 5B1 + u113, d113 1238 1235
∆0 5B1 + u113, d113 1245 1237
∆− 5B1 + d113 1253 ≤ 1238
Λ 3B1 + u114, d114, s111 1090 1116
Σ+ 3B1 + u114, s110 1165 1189
Σ0 3B1 + u114, d113, s110 1171 1192
Σ− 3B1 + d114, s110 1178 1197

Σ∗+ 2B1 + 2B2 + u114, s110 1381 1385
Ξ0 2B1 + 2B2 + u113, s110, s111 1301 1315
Ξ− 3B1 + d113, s110 1288 1321
Ξ∗0 B1 + 3B2 + u113, s110 1531 1532
Ξ∗− B1 + 3B2 + d113, s110 1505 1535
Ω− 3B1 + s108, s111 1667 1672
Λc 3B1 + d110, u110, c106 2261 2282
Λb 3B1 + d108, u108, b105 5390 5425

Table11. The predictions for baryon masses assuming Ye = 0.
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From the table for the predicted baryon masses one finds that the predicted masses are slightly
below the experimental masses for all baryons except for some baryons in N − ∆ multiplet and
for Ω. The reduction of the CP2 mass scale by a factor of order per cent consistent with what is
known about top quark mass cures this problem (also ordinary color interactions could take of the
problem).

In principle the quark contribution to the hadron mass is measurable. Suppose that color
binding conformal weight can be assigned to the color interaction in super-canonical degrees of
freedom alone. Above the ”ionization” energy, which corresponds to the contribution of quarks
to the mass of hadron, valence quark space-time sheet can separate from the hadronic space-time
sheet in the collisions of hadrons. This threshold might be visible in the collision cross sections for
say nucleon-nucleon collisions. For nucleons this energy corresponds to 170 MeV.

5.8 Some critical comments

The number theoretical model for quark masses and topological mixing matrices and CKM matrix
as well as the simple model for hadron masses give strong support for the belief that the general
vision is correct. One must bear in mind that the scenario need not be final so that the basic
objections deserve an explicit articulation.

5.8.1 Is the canonical identification the only manner to map mass squared values to
their real counterparts

In p-adic thermodynamics p-adic particle mass squared is mapped to its real counterpart by the
canonical identification. If the O(p) contribution corresponds to non-trivial rational number, the
real mass is of order CP2 mass. This allows to eliminate a large number of exotics. In particular,
it implies that the modular contribution to the mass squared must be of form np rather than
(r/s)p. This assumption is absolutely crucial in the model of topological mixing matrices and
CKM matrix.

One can however question the use of the standard form of the canonical identification to map p-
adic mass squared to its real counterpart. The requirement that p-adic and real S-matrix elements
(in particular coupling constants) are related in a realistic manner, forces a modification of the
canonical identification. Instead of a direct identification of real and p-adic rationals, the p-adic
rationals in Rp are mapped to real rationals (or vice versa) using a variant of the canonical identi-
fication IR→Rp in which the expansion of rational number q = r/s =

∑
rnpn/

∑
snpn is replaced

with the rational number q1 = r1/s1 =
∑

rnp−n/
∑

snp−n interpreted as a p-adic number:

q =
r

s
=

∑
n rnpn

∑
m snpn

→ q1 =
∑

n rnp−n

∑
m snp−n

=
I(r)
I(s)

. (107)

The nice feature of this variant of the canonical identification is that it respects quantitative
behavior of amplitudes, respects symmetries, and maps unitary matrices to unitary matrices if
the matrix elements correspond to rationals (or generalized rationals in algebraic extension of
rationals) if the p-adic integers involved are smaller than p. At the limit of infinitely large p this
is always satisfied.

Quite generally, the thermodynamical contribution to the particle mass squared is in the lowest
p-adic order of form rp/s, where r is the number of excitations with conformal weight 1 and s
the number of massless excitations with vanishing conformal weight. The real counterpart of mass
squared for the ordinary canonical identification is of order CP2 mass by r/s = R + r1p + ... with
R < p near to p. Hence the states for which massless state is degenerate become ultra heavy if r
is not divisible by s. For the new variant of canonical identification these states would be light.
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Even worse, the new form does not require the modular contribution to the p-adic mass squared
to be of form np. Some other justification for this assumption would be needed. The first guess
is that the conditions on mass squared plus probability conservation might not be consistent with
unitarity unless the modular contribution to the mass squared remains integer valued in the mixing
(note that all integer values are not possible). Direct numerical experimentation however shows
that that this is not the case.

The predicted integer valued contributions to the mass squared are minimal in the case of u
and d quarks and very nearly maximal in the case t and b quarks. This suggests a possible way out
of the difficulty. Perhaps the rational valued p-adic mass squared of u and d quarks are minimal
and those of b and t quarks maximal or nearly maximal. This might also allow to improve the
prediction for the CKM matrix.

The objection against the use of the new variant of canonical identification is that the pre-
dictions of p-adic thermodynamics for mass squared are not rational numbers but infinite power
series. p-Adic thermodynamics itself however defines a unique representation of probabilities as
ratios of generalized Boltzmann weights and partition function and thus the variant of canonical
identification might indeed generalize. If this representation generalizes to the sum of modular
and Virasoro contributions, then the new form of canonical identification becomes very attractive.
Also an elegant model for the masses of intermediate gauge bosons results if O(p) contribution to
mass squared is allowed to be a rational number.

5.8.2 Uncertainties related to the CP2 length scale

The uncertainties related to the CP2 length scale mean that one cannot take the detailed model
for hadron masses too literally unless one takes the recent value of top quark mass at face value
and requiring (Ye = 0, Yt = 1) in rather high accuracy. This constraint allows at most 2.5 per cent
reduction of the fundamental mass scale and baryonic masses suggest a 1 per cent reduction. The
accurate knowledge of top quark mass is therefore of fundamental importance from the point of
view of TGD.
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