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Abstract

During years I have spent a lot of time and effort to attempts to imagine various options
for the construction of S-matrix. Contrary to my original belief, the real problem has not
been the lack of my analytic skills but the failure of ordinary QFT based thinking in TGD
framework.

Super-conformal symmetries generalized from string model context to TGD framework are
symmetries of S-matrix. This is very powerful constraint to S-matrix but useless unless one
has precisely defined ontology translated to a rigorous mathematical framework. The zero
energy ontology of TGD is now rather well understood but differs dramatically from that
of standard quantum field theories. Second deep difference is that path integral formalism
is given up and the goal is to construct S-matrix as a generalization of braiding S-matrices
with reaction vertices replaced with the replication of number theoretic braids associated with
partonic 2-surfaces taking the role of vertices. Also number theoretic universality requiring
fusion of real physics and various p-adic physics to single coherent whole is a completely new
element.

The most recent vision about S-matrix combines ideas scattered in various chapters of
various books and often drowned with details. A very brief summary would be as follows.

a) In TGD framework functional integral formalism is given up. S-matrix should be con-
structible as a generalization of braiding S-matrix in such a manner that the number theoretic
braids assignable to light-like partonic 3-surfaces glued along their ends at 2-dimensional par-
tonic 2-surfaces representing reaction vertices replicate in the vertex. This means a replace-
ment of the free dynamics of point particles of quantum field theories with braiding dynamics
associated with partonic 2-surfaces carrying braids and the replacement of particle creation
with the creation of partons and replication of braids.

b) The construction of braiding S-matrices assignable to the incoming and outgoing par-
tonic 2-surfaces is not a problem. The problem is to express mathematically what happens
in the vertex. Here the observation that the tensor product of hyper-finite factors (HFFs)
of type II is HFF of type II is the key observation. Many-parton vertex can be identified
as a unitary isomorphism between the tensor product of incoming resp. outgoing HFFs. A
reduction to HFF of type II1 occurs because only a finite-dimensional projection of S-matrix
in bosonic degrees of freedom defines a normalizable state. Most importantly, unitarity and
non-triviality of S-matrix follows trivially.

c) HFFs of type III could also appear at the level of field operators used to create states
but that at the level of quantum states everything reduces to HFFs of type II1 and their
tensor products giving these factors back. If braiding automorphisms reduce to the purely
intrinsic unitary automorphisms of HFFs of type III then for certain values of the time pa-
rameter of automorphism having interpretation as a scaling parameter these automorphisms
are trivial. These time scales could correspond to p-adic time scales so that p-adic length
scale hypothesis would emerge at the fundamental level. In this kind of situation the braiding
S-matrices associated with the incoming and outgoing partons could be trivial so that every-
thing would reduce to this unitary isomorphism: a counterpart for the elimination of external
legs from Feynman diagram in QFT. p-Adic thermodynamics and particle massivation could
be also obtained when the time parameter of the automorphism is allowed to be complex as
a generalization of thermal QFT.

d) One might hope that all complications related to what happens for space-like 3-surfaces
could be eliminated by quantum classical correspondence stating that space-time view about
particle reaction is only a space-time correlate for what happens in quantum fluctuating degrees
of freedom associated with partonic 2-surfaces. This turns out to be the case only in non-
perturbative phase. The reason is that the arguments of n-point function appear as continuous
moduli of Kähler function. In non-perturbative phases the dependence of the maximum of
Kähler function on the arguments of n-point function cannot be regarded as negligible and
Kähler function becomes the key to the understanding of these effects including formation of
bound states and color confinement.

e) In this picture light-like 3-surface would take the dual role as a correlate for both state
and time evolution of state and this dual role allows to understand why the restriction of time
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like entanglement to that described by S-matrix must be made. For fixed values of moduli
each reaction would correspond to a minimal braid diagram involving exchanges of partons
being in one-one correspondence with a maximum of Kähler function. By quantum criticality
and the requirement of ideal quantum-classical correspondence only one such diagram would
contribute for given values of moduli. Coupling constant evolution would not be however lost:
it would be realized as p-adic coupling constant at the level of free states via the log(p) scaling
of eigen modes of the modified Dirac operator.

f) A completely unexpected prediction deserving a special emphasis is that number the-
oretic braids replicate in vertices. This means classical replication of the number theoretic
information carried by them. This allows to interpret one of the TGD inspired models of
genetic code in terms of number theoretic braids representing at deeper level the information
carried by DNA. This picture provides also further support for the proposal that DNA acts as
topological quantum computer utilizing braids associated with partonic light-like 3-surfaces
(which can have arbitrary size). In the reverse direction one must conclude that even elemen-
tary particles could be information processing and communicating entities in TGD Universe.

To sum up, my personal feeling is that the constraints identified hitherto might lead to
a more or less unique final result and I can only hope that some young analytically blessed
brain would bother to transform this picture to concrete calculational recipes.

1 Introduction

The purpose of this chapter is to provide a view about construction of S-matrix with a special
emphasis on the role of hyper-finite factors of type II1 (HFF for shortly). I do not pretend of having
handle about the huge technical complexities and can only recommend the works of von Neumann
[20, 21, 22, 23], Tomita [48, 49, 50, 51], the work of Powers and Araki and Woods which served as
starting point for the work of Connes [46, 47], the work of Jones [25, 64], and other leading figures
in the field. What is may main contribution is fresh physical interpretation of this mathematics
which also helps to make mathematical conjectures. The book of Connes [47] available in web
provides an excellent overall view about von Neumann algebras and non-commutative geometry.

1.1 About the general conceptual framework behind quantum TGD

Let us first list the basic conceptual framework in which I try to concretize the ideas about S-
matrix.

1.1.1 N = 4 super-conformal invariance and light-like 3-surfaces as fundamental dy-
namical objects

Super-conformal symmetries generalized from string model context to TGD framework are symme-
tries of S-matrix. This is very powerful constraint to S-matrix but useless unless one has precisely
defined ontology translated to a rigorous mathematical framework. The zero energy ontology of
TGD is now rather well understood but differs dramatically from that of standard quantum field
theories. Second deep difference is that path integral formalism is given up and the goal is to
construct S-matrix as a generalization of braiding S-matrices with reaction vertices replaced with
the replication of number theoretic braids associated with partonic 2-surfaces taking the role of
vertices.

The path leading to the understanding of super-conformal invariance in TGD framework was
long but the final outcome is briefly described. The are two kinds of super-conformal symmetries.

1. The first super-conformal invariance is associated with light-cone boundary and is due to
its metric 2-dimensionality putting 4-D Minkowski space in a unique position. The canon-
ical transformations of δH± = δM4

± × CP2 are identified as isometries of the configuration
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space. The super-generators of super-canonical algebra correspond to the gamma matrices
of configuration space.

2. Light-like partonic 3-surfaces X3 are the basic dynamical objects and light-likeness is re-
spected by the 3-D variant of Kac-Moody algebra of conformal transformations of imbedding
space made local with respect to X3. Ordinary 1-D Kac-Moody algebra with complex coordi-
nate z replaced with a light-like radial coordinate r takes a special role and super Kac-Moody
symmetry is associated with this. The conformal symmetries associated with X2 are counter-
part of stringy conformal symmetries but have a role analogous to the conformal symmetries
of critical statistical systems.

The light-likeness property allows Chern-Simons action for the induced Kähler gauge potential
as the only possible action principle. The resulting almost topological conformal field theory has
maximal N = 4 super-conformal symmetry with the inherent gauge group SU(2)×U(2) identified
in terms of rotations and electro-weak symmetries acting on imbedding space spinors.

The constraints coming from p-adic mass calculations lead to the following overall view about
the relationship between the two algebras. Mass squared is p-adic thermal expectation value of
conformal weight meaning that four-momentum does not appear in the super-conformal generators:
this option is excluded also by purely geometric considerations. p-Adic thermodynamics is justified
by the fact that physical states are not annihilated by SKMV. Super-canonical Virasoro algebra
(SCV) creates tachyonic ground states with vanishing conformal weight as null states annihilated
by Ln, n < 0, and SC and SKM generate massless states to which p-adic thermodynamics in
SKMV degrees of freedom applies. The commutators of SKM and SC algebras and their Virasoro
counterparts annihilate the physical states.

1.1.2 Dirac determinant and zeta function associated with modified Dirac operator
as coders of TGD physics

For long time the zeros of Riemann Zeta remained excellent candidates for the conformal weights
labelling the generators of super-canonical algebra [B2, B3, A6]. The basic motivation was that
the radial conformal weights have very naturally real part which equals to -1/2 as does also the
negative of the real part of complex zeros of Riemann Zeta. Also other conformal weights are
possible but not so natural.

1. Why Riemann Zeta does not work

The following observations have however changed the situation.

1. The almost defining property of zeta functions is that their complex zeros reside at the
critical line. There exists a lot of zeta functions [E3] so that the spectrum of super-canonical
conformal weights allows to consider also other zetas.

2. The zeta functions analogous to the basic building blocks of Riemann Zeta labelled by prime
p are especially natural from the point of view of p-adic length scale hypothesis and they
have automatically the nice algebraic properties required by the number theoretic universality
whereas in the case of Riemann Zeta they must be conjectured.

3. The generalized eigenvalues of the modified Dirac operator define in a very natural manner
zeta functions coding geometric information about partonic 2-surfaces whereas Riemann Zeta
has no obvious interpretation of this kind.

These findings do not of course exclude Riemann zeta or zetas analogous to it. For instance,
one can assign Riemann Zeta to the purely bosonic infinite primes very naturally. The spectrum of
the scaling generator L0 consists of non-negative integers and the positive part of spectrum defines
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a zeta function of form
∑

n>0 g(n)n−s, which might be relevant for quantum TGD. I do not known
about the zeros of this zeta function.

A further natural speculation was that the zeros of polyzetas ζ(z1, ..., zK) label the super-
canonical conformal weights of K-particle bound states. The vanishing of loop corrections could be
understood as being due to the fact that they are proportional to polyzetas having super-canonical
conformal weights as arguments. This speculation was inspired by the fact that polyzetas with
integer arguments emerge in loop corrections of quantum field theories.

2. Zeta functions assignable to the modified Dirac operator

In the case of the modified Dirac operator and super-canonical conformal weights Riemann
Zeta is naturally replaced by a zeta function determined by purely physical considerations (detailed
argument can be found in [A6, C1]).

1. The determinant of the modified Dirac operator D gives rise to the vacuum functional of
TGD and the conjecture is that it reduces to a product of exponents of Kähler function and
Chern-Simons action. The construction assigns to a given 3-D light-like surface X3

l a 4-D
space-time sheet conjectured to be a preferred extremal of Kähler action [A6].

2. The generalized eigenvalue λ of D is actually a scalar field depending on the coordinates of
partonic 2-surface X2 (and light-like 3-surface X3

l ). λ codes purely geometric information
about the light-like 3-surface, and Higgs vacuum expectation is naturally proportional to λ.

3. The minima of the modulus of the holomorphic function λ in X2 give rise to what I call
number theoretic braids. Dirac determinant is product of the eigenvalues at the minima of
|λ| interpreted as a function X3

l .

4. One can assign to the values of λ at the points of the number theoretic braid also zeta function,
call it ζ. ζ codes geometric information about 3-surface and super-canonical conformal
weights correspond naturally to its zeros. ζ is sum over a finite number of terms only, and
if it is rational function of a suitable coordinate, it has all the required number theoretic
properties whereas in the case of Riemann Zeta these properties require strong number
theoretic conjectures.

The notion of polyzeta might generalize in a natural manner to a dynamical polyzeta. Suppose
that one has a collection X2

i of partonic 2-surfaces assignable to a connected space-like 3-surface
defined by the intersection X3 = X4 ∩ δM4

+ × CP2. In this kind of situation one might hope
that the notion of polyzeta generalizes and can be defined in terms of the generalized eigenvalues
of the modified Dirac operator assigned with various partonic 2-surfaces X2

i . If X3 is connected,
the polyzeta cannot be a mere product of independent zetas associated with X2

i obtained by
assigning separate space-time sheets to the light-like orbits of X2

i . Even if it reduces to a product,
the eigenvalues assignable to X2

i are correlated by the constraint that the minimization of λi is
consistent with the condition X2

i ⊂ X3. This polyzeta would naturally characterize the bound
state character of the resulting state.

1.1.3 S-matrix as a functor

Almost topological QFT property of quantum allows to identify S-matrix as a functor from the
category of generalized Feynman cobordisms to the category of operators mapping the Hilbert space
of positive energy states to that for negative energy states: these Hilbert spaces are assignable to
partonic 2-surfaces. Feynman cobordism is the generalized Feynman diagram having light-like 3-
surfaces as lines glued together along their ends defining vertices as 2-surfaces. This picture differs
dramatically from that of string models. There is a functional integral over the small deformations
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of Feynman cobordisms corresponding to maxima of Kähler function. Functor property generalizes
the unitary condition and allows also thermal S-matrices which seem to be unavoidable since
imbedding space degrees of freedom give rise to a factor of type I with Tr(id) = ∞.

1.1.4 S-matrix in zero energy ontology

Zero energy ontology allows to construct unitary S-matrix in fermionic degrees of freedom as
unitary entanglement coefficients between positive and negative energy parts of zero energy state.
The basic properties of hyper-finite factor II1 are absolutely crucial. The inclusion of bosonic
degrees of freedom lead to a replacement of HFF of type II1 with HFF of type II∞ = II1 ⊗ I∞.
However, normalizability of the states allows only a projection of S-matrix to a finite-dimensional
subspace of incoming or outgoing states. Hence the S-matrix is effectively restricted to II1⊗ In =
II1 factor so that at the level of physical states HFF of type II1 results. This is absolutely crucial
for the unitary of the S-matrix since it makes possible to have Tr(SS†) = Tr(Id) = 1. If factor of
type I is present as a tensor factor, thermal S-matrix is the only possibility and later arguments
in favor of the idea that thermodynamics is unavoidable part of quantum theory in zero energy
ontology will be developed.

One can worry whether unitarity condition is consistent with the idea that fermionic degrees
of freedom should allow to represent Boolean functions in terms of time-like entanglement. That
unitary time evolution is able to represent this kind of functions in the case of quantum computers
suggests that unitarity is not too strong a restriction. The basic question is whether only a
”cognitive” representation of physical S-matrix in terms of time like entanglement or a genuine
physical S-matrix is in question. It seems that the latter option is the only possible one so that
physical systems would represent the laws of physics.

1.1.5 U-matrix

Besides S-matrix there is also U -matrix defining the unitary process associated with the quantum
jump. S- resp. U -matrix characterizes quantum state resp. quantum jump so that they cannot be
one and same thing.

1. There are good arguments supporting the view that U -matrix is almost trivial, and the real
importance of U -matrix seems to be related to the to the description of intentional action
identified as a transition between p-adic and real zero energy states and to the possibility
to perceive states rather than only changes as quantum jumps leaving the state almost
unchanged.

2. State function reduction corresponds to a projection sub-factor in TGD inspired quantum
measurement theory whereas U process in some sense corresponds its reversal. Therefore U
matrix might correspond to unitary isomorphism mapping factor to a larger factor containing
it.

3. State function reduction must be consistent with the unitarity of S-matrix defining time-like
entanglement. Since state function reduction means essentially multiplication by a projector
to a sub-space it seems that state function reduction for both incoming and outgoing states
are possible and would naturally correspond to projections to sub-factors of corresponding
HFFs of type II1.

1.1.6 Unitarity of S-matrix is not necessary in zero energy ontology

U-matrix is necessarily unitary. There are good reasons to believe that this condition combined
with Lorentz invariance makes it almost trivial. In the case of S-matrix unitarity is not absolutely
necessary.
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The restriction of the time-like entanglement coefficients to a unitary S-matrix would conform
with the idea that light-like partonic 2-surfaces represent a dynamical evolution at quantum level
so that zero energy states must be orthogonal both with respect to positive and negative energy
parts of the states. On the other hand, the light-like 3-surface can be chosen arbitrarily and its
choice indeed affects S-matrix. Hence the theory cannot fully reduce to a 2-dimensional theory.
The interpretation is that light-like 3-surfaces are in 1-1 correspondence with the ground states of
super-conformal representations identifiable as light particles.

There are several arguments supporting the view that S-matrix need not be unitary. The
simplest observation is that imbedding space degrees of freedom naturally give rise to a factor
of type I so that only thermal S-matrix defines a normalizable zero energy state. S-matrix as
functor from the category of Feynman cobordisms to the category operators defining entanglement
coefficients implies that S-matrix in fermionic degrees of freedom for a product of cobordisms is
product of the S-matrices for cobordisms. This implies that in fermionic degrees of freedom S-
matrix is thermal S-matrix with time parameter replaced with complex time parameter whose
imaginary part corresponds to inverse temperature. Also an argument based on the existence of
universal thermal S-matrix with a complex time parameter for hyper-finite factors of type III1

supports the view that unitarity is not necessary. A further argument is based on the finding that
in dimensions D < 4 unitary S-matrix exists only if cobordism is trivial so that topology change
would not be possible. This raises the fascinating possibility that thermodynamics - in particular
p-adic thermodynamics - is an unavoidable and inherent property of quantum TGD.

1.1.7 Does Connes tensor product fix the allowed M-matrices?

Hyperfinite factors of type II1 and the inclusion N ⊂M inclusions have been proposed to define
quantum measurement theory with a finite measurement resolution characterized by N and with
complex rays of state space replaced with N rays. What this really means is far from clear.

1. Naively one expects that matrices whose elements are elements of N give a representation
for M. Now however unit operator has unit trace and one cannot visualize the situation in
terms of matrices in case of M and N .

2. The state space with N resolution would be formally M/N consisting of N rays. For M/N
one has finite-D matrices with non-commuting elements of N . In this case quantum matrix
elements should be multiplets of selected elements of N , not all possible elements of N .
One cannot therefore think in terms of the tensor product of N with M/N regarded as a
finite-D matrix algebra.

3. What does this mean? Obviously one must pose a condition implying that N action com-
mutes with matrix action just like C: this poses conditions on the matrices that one can allow.
Connes tensor product [43] does just this. Note I have proposed already earlier the reduction
of interactions to Connes tensor product (see the section ”Could Connes tensor product....”
later in this chapter) but without reference to zero energy ontology as a fundamental manner
to define measurement resolution with respect time and assuming unitarity.

The starting point is the Jones inclusion sequence

N ⊂M ⊂M⊗N M...

Here M⊗N M is Connes tensor product which can be seen as elements of the ordinary tensor
product commuting with N action so that N indeed acts like complex numbers in M. M/N is in
this picture represented with M in which operators defined by Connes tensor products of elements
of M. The replacement M → M/N corresponds to the replacement of the tensor product of
elements of M defining matrices with Connes tensor product.
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One can try to generalize this picture to zero energy ontology.

1. M⊗N M would be generalized by M+ ⊗N M−. Here M+ would create positive energy
states and M− negative energy states and N would create zero energy states in some shorter
time scale resolution: this would be the precise meaning of finite measurement resolution.

2. Connes entanglement with respect to N would define a non-trivial and unique recipe for
constructing M-matrices as a generalization of S-matrices expressible as products of square
root of density matrix and unitary S-matrix but it is not how clear how many M-matrices this
allows. In any case M-matrices would depend on the triplet (N ,M+,M−) and this would
correspond to p-adic length scale evolution giving replacing coupling constant evolution in
TGD framework. Thermodynamics would enter the fundamental quantum theory via the
square root of density matrix.

3. Zero energy ontology is a key element of this picture and the most compelling argument for
zero energy ontology is the possibility of describing coherent states of Cooper pairs without
giving up fermion number, charge, etc. conservation and automatic emerges of length scale
dependent notion of quantum numbers (quantum numbers identified as those associated with
positive energy factor).

To sum up, interactions would be an outcome of a finite measurement resolution and at the
never-achievable limit of infinite measurement resolution the theory would be free: this would be
the counterpart of asymptotic freedom.

1.1.8 Quantum classical correspondence

Quantum classical correspondence states that there is a correspondence between quantum fluctu-
ating degrees of freedom associated with partonic 2-surfaces and classical dynamics. The weakest
form of this principle is that the ground states of partonic super-conformal representations (mass-
less states which generate light masses observed in laboratory) correspond to the interior dynamics
of space-time sheets containing the partonic 2-surfaces. At the space-time level there would be 1-1
correspondence with the maxima of Kähler function giving rise to the analog of spin glass energy
landscape.

One could protest by saying that excited states of super-conformal representations have no
space-time correlate in this picture. Quantum states are replaced with states in which the projec-
tion of S-matrix to a finite-dimensional space in bosonic degrees of freedom appears as time-like
entanglement coefficients so that quantum classical correspondence is obtained in strict sense after
all. These states states are formally analogous which raises the question whether an actual rela-
tionship exists. For HFFs of type III unitary time evolution and thermal equilibrium are indeed
closely related aspects of states [47]. I∞ → In cutoff in the bosonic degrees of freedom would
naturally have the discretization represented by number theoretic braids as a space-time correlate.

The effective elimination of the degrees of freedom associated with the space-time interior
implied by the 1-1 correlation would allow to forget 4-D space-time degrees of freedom more or
less completely as far as calculation of S-matrix is considered and everything would reduce to Fock
space level as it does in quantum field theories. The functional integral around the maximum of
Kähler function would select a set of preferred light-like partonic 3-surfaces. Quantum criticality
suggests that the functional integral can be carried out exactly.

1.1.9 How TGD differs from string models

An important detail which deserves to be mentioned separately is one crucial deviation from string
model picture: the stringy decays of partonic 2-surfaces or 3-surfaces are space-time correlates for

10



the propagation of particle via several different routes rather than genuine particle decay. Note that
partonic 2-surfaces can have arbitrarily large size and the outer boundary of any physical system
represents the basic example of this kind of surface. Particle reactions correspond to branchings of
light-like partonic 2-surfaces so that incoming and outgoing partons are glued together along their
ends. This picture makes sense because quantum TGD reduces to almost topological conformal
QFT at parton level (only light-likeness brings in the notion of metric).

Quantum classical correspondence allows to interpret light-like partonic 3-surface either as a
time evolution of a highly non-deterministic 2-D system or as a 3-D system. This state-dynamics
duality was discovered already in [E9], where it was realized that topological quantum computa-
tion has interpretation either as a program (state) or running of program (dynamics). Complete
reduction to 2-D dynamics is not possible since the light-like 3-surfaces associated with maxima of
Kähler action define spin glass energy landscape such that each maximum corresponds to its own
S-matrix.

In this picture particle reactions correspond classically to branchings of partonic 2-surfaces
generalizing the branchings for lines in Feynman diagrams. The stringy vertices for decays of
surfaces correspond in TGD framework to the classical space-time correlate for a particle travelling
along different paths and the particle creation and annihilation is a generalization of what occurs
in Feynman diagrams with vertices replaced with 2-dimensional partonic surfaces along which
light-like partonic 3-surfaces meet.

1.1.10 Physics as a generalized number theory vision

TGD as a generalized number theory vision gives powerful constraints. New view about space-time
involves p-adic space-time sheets as space-time correlates for cognitive representations in fermionic
case and for intentions in the bosonic case. This leads to the notion of number theoretic braid
belonging to the algebraic intersection of real and p-adic partonic surfaces obeying same algebraic
equations.

The implication is that the data characterizing S-matrix elements should come from discrete
algebraic points of number theoretic braids. The Galois groups for braids occupying regions of
partonic 2-surface emerge as a new element and relate closely to the representations of braid
groups in HFFs of type II1. Number theoretic universality leads to the condition that S-matrix
elements are algebraic numbers in the extension of rational defined by the extension of p-adic
numbers involved.

1.1.11 The role of hyper-finite factors of type II1

The Clifford algebra of configuration space (”world of classical worlds”) spinors is very naturally
a hyper-finite factor of type II1. During the last few years I have gradually learned something
about the magnificent mathematical beauty of these objects.

1. TGD inspired quantum measurement theory with measurement resolution characterized in
terms of Jones inclusion and based on HFFs of type II1 brings in non-commutative quantum
physics and leads to powerful general predictions [C7, C2, H2]. The basic idea is that complex
rays of the state space are replaced with N rays for Jones inclusion N ⊂ M. N defines
the measurement resolution in the sense that the group G leaving elements of N invariant
characterizes the measured quantum numbers.

2. Hyper-finite factors have the property that they are isomorphic with their tensor powers.
This makes possible the construction of vertices as unitary isomorphisms between tensor
products of HFFs of type II1 associated with incoming and outgoing states. The core part
of S-matrix boils down to a unitary isomorphism between tensor products of hyper-finite
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factors of type II1 associated with incoming resp. outgoing partonic 3-surfaces whose ends
meet at the partonic 2-surface representing reaction vertex.

3. The study of Jones inclusions leads to the idea that Planck constant is dynamical and quan-
tized. The predicted hierarchy of Planck constants involving a generalization of imbedding
space concept and an explanation of dark matter as macroscopic quantum phases [A9]. Here
the special mathematical role of Jones inclusions with index r ≤ 4 is crucial.

4. The properties of HFFs inspire also the idea that TGD based physics should able to mimic
any imaginable quantum physical system defined by gauge theory or conformal field theory
involving Kac-Moody symmetry. Thus the ultimate physics would be kind of analog for Tur-
ing machine. The prediction inspired by TGD based explanation of McKay correspondence
[27] is that TGD Universe is indeed able to simulate gauge and Kac-Moody dynamics of
a very large subset of ADE type groups. In fact, also much more general prediction that
simulation should be possible for any compact Lie group emerges.

5. HFFs of type II1 lead also to deep connections with number theory [27] and number theo-
retical braids can be interpreted in terms of representations of Galois groups assignable with
partonic 2-surfaces in terms of HFFs of type II1. Particle decay represents a replication of
number theoretical braids and this together with p-adic fractality and hierarchy of Planck
constants suggests strongly direct connections with genetic code and DNA.

1.1.12 Could TGD emerge from a local version of infinite-dimensional Clifford alge-
bra?

A crucial step in the progress was the realization that TGD emerges from the mere idea that
a local version of hyper-finite factor of type II1 represented as an infinite-dimensional Clifford
algebra must exist (as analog of say local gauge groups). This implies a connection with the
classical number fields. Quantum version of complexified octonions defining the coordinate with
respect to which one localizes is unique by its non-associativity allowing to uniquely separate the
powers of octonionic coordinate from the associative infinite-dimensional Clifford algebra elements
appearing as Taylor coefficients in the expansion of Clifford algebra valued field.

Associativity condition implies the classical and quantum dynamics of TGD. Space-time sur-
faces are hyper-quaternionic of co-hyper-quatenionic sub-manifolds of hyper-octonionic imbedding
space HO. Also the interpretation as a four-surface in H = M4×CP2 emerges and implies HO−H
duality. What is also nice that Minkowski spaces correspond to the spectra for the eigenvalues
of maximal set of commuting quantum coordinates of suitably defined quantum spaces. Thus
Minkowski signature has quantal explanation.

1.2 Summary about the construction of S-matrix

It is perhaps wise to summarize briefly the vision about S-matrix.

1. S-matrix defines entanglement between positive and negative energy parts of zero energy
states. This kind of S-matrix need not be unitary unlike the U-matrix associated with
unitary process forming part of quantum jump. There are several good arguments suggesting
that that S-matrix cannot be unitary but can be regarded as thermal S-matrix so that
thermodynamics would become an essential part of quantum theory. In TGD framework
path integral formalism is given up although functional integral over the 3-surfaces is present.

2. Almost topological QFT property of quantum allows to identify S-matrix as a functor from
the category of generalized Feynman cobordisms to the category of operators mapping the
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Hilbert space of positive energy states to that for negative energy states: these Hilbert spaces
are assignable to partonic 2-surfaces. It is difficult to overestimate the importance of this
result bringing category theory absolutely essential part of quantum TGD. One can assign
to S-matrix a complex parameter whose real part has interpretation as interaction time and
imaginary part as the inverse temperature. S-matrices and thus also quantum states in
zero energy ontology possess a semigroup like structure and in the product time and inverse
temperature are additive. This suggests that the cosmological evolution of temperature
as T ∝ 1/t could be understood at the level of fundamental quantum theory. The most
general identification of the time like entanglement coefficients would be as a ”square root”
of density matrix thus satisfying the condition ρ+ = SS†, ρ− = SS†, Tr(ρpm) = 1. ρ±

has interpretation as density matrix for positive/negative energy states. Physical intuition
suggest that S can be written as a product of universal unitary matrix and square root of
state dependent density matrix.

3. S-matrix should be constructible as a generalization of braiding S-matrix in such a manner
that the number theoretic braids assignable to light-like partonic 3-surfaces glued along their
ends at 2-dimensional partonic 2-surfaces representing reaction vertices replicate in the vertex
[C6].

4. The construction of braiding S-matrices assignable to the incoming and outgoing partonic
2-surfaces is not a problem [C6]. The problem is to express mathematically what happens in
the vertex. Here the observation that the tensor product of HFFs of type II is HFF of type
II is the key observation. Many-parton vertex can be identified as a unitary isomorphism
between the tensor product of incoming resp. outgoing HFFs. A reduction to HFF of
type II1 occurs because only a finite-dimensional projection of S-matrix in bosonic degrees
of freedom defines a normalizable state. In the case of factor of type II∞ only thermal
S-matrix is possible without finite-dimensional projection and thermodynamics would thus
emerge as an essential part of quantum theory.

5. HFFs of type III could also appear at the level of field operators used to create states
but at the level of quantum states everything reduces to HFFs of type II1 and their tensor
products giving these factors back. If braiding automorphisms reduce to the purely intrinsic
unitary automorphisms of HFFs of type III then for certain values of the time parameter of
automorphism having interpretation as a scaling parameter these automorphisms are trivial.
These time scales could correspond to p-adic time scales so that p-adic length scale hypothesis
would emerge at the fundamental level. In this kind of situation the braiding S-matrices
associated with the incoming and outgoing partons could be trivial so that everything would
reduce to this unitary isomorphism: a counterpart for the elimination of external legs from
Feynman diagram in QFT.

6. One might hope that all complications related to what happens for space-like 3-surfaces
could be eliminated by quantum classical correspondence stating that space-time view about
particle reaction is only a space-time correlate for what happens in quantum fluctuating
degrees of freedom associated with partonic 2-surfaces. This turns out to be the case only
in non-perturbative phase. The reason is that the arguments of n-point function appear as
continuous moduli of Kähler function. In non-perturbative phases the dependence of the
maximum of Kähler function on the arguments of n-point function cannot be regarded as
negligible and Kähler function becomes the key to the understanding of these effects including
formation of bound states and color confinement.

7. In this picture light-like 3-surface would take the dual role as a correlate for both state and
time evolution of state and this dual role allows to understand why the restriction of time
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like entanglement to that described by S-matrix must be made. For fixed values of moduli
each reaction would correspond to a minimal braid diagram involving exchanges of partons
being in one-one correspondence with a maximum of Kähler function. By quantum criticality
and the requirement of ideal quantum-classical correspondence only one such diagram would
contribute for given values of moduli.

i) A completely unexpected prediction deserving a special emphasis is that number theoretic
braids replicate in vertices. This is of course the braid counterpart for the introduction of annihi-
lation and creation of particles in the transition from free QFT to an interacting one. This means
classical replication of the number theoretic information carried by them. This allows to interpret
one of the TGD inspired models of genetic code [L4] in terms of number theoretic braids repre-
senting at deeper level the information carried by DNA. This picture provides also further support
for the proposal that DNA acts as topological quantum computer utilizing braids associated with
partonic light-like 3-surfaces (which can have arbitrary size) [E9]. In the reverse direction one
must conclude that even elementary particles could be information processing and communicating
entities in TGD Universe.

1.3 Topics of the chapter

In this chapter the role of HFFs of type II1 and possibly also that of type III is discussed. What
makes the latter factors attractive is that they possess a unique one parameter group of outer
automorphisms defining a natural candidate for a unitary S-matrix if inner automorphisms act as
gauge transformations. Only thermal S-matrix defines a normalizable state in zero energy ontology
with complex value of time parameter giving rise to thermalization.

Also number theoretical ideas are considered. The notion of number theoretic braid is central
and the vision that quantum physics in TGD Universe provides physical representations of Galois
groups for the algebraic extensions of rationals is discussed. The reader wishing for a brief summary
of TGD might find the e three articles about TGD, TGD inspired theory of consciousness, and
TGD based view about quantum biology helpful [16, 17, 18].

2 Basic facts about hyper-finite factors

2.1 Von Neumann algebras

In this section basic facts about von Neumann algebras are summarized using as a background
material the concise summary given in the lecture notes of Longo [24].

2.1.1 Basic definitions

A formal definition of von Neumann algebra [21, 22, 23] is as a ∗-subalgebra of the set of bounded
operators B(H) on a Hilbert space H closed under weak operator topology, stable under the
conjugation J =∗: x → x∗, and containing identity operator Id. This definition allows also von
Neumann algebras for which the trace of the unit operator is not finite.

Identity operator is the only operator commuting with a simple von Neumann algebra. A
general von Neumann algebra allows a decomposition as a direct integral of simple algebras, which
von Neumann called factors. Classification of von Neumann algebras reduces to that for factors.

B(H) has involution ∗ and is thus a ∗-algebra. B(H) has order order structure A ≥ 0 : (Ax, x) ≥
0. This is equivalent to A = BB∗ so that order structure is determined by algebraic structure.
B(H) has metric structure in the sense that norm defined as supremum of ||Ax||, ||x|| ≤ 1 defines
the notion of continuity. ||A||2 = inf{λ > 0 : AA∗ ≤ λI} so that algebraic structure determines
metric structure.
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There are also other topologies for B(H) besides norm topology.

1. Ai → A strongly if ||Ax − Aix|| → 0 for all x. This topology defines the topology of
C∗ algebra. B(H) is a Banach algebra that is ||AB|| ≤ ||A|| × ||B|| (inner product is not
necessary) and also C∗ algebra that is ||AA∗|| = ||A||2.

2. Ai → A weakly if (Aix, y) → (Ax, y) for all pairs (x, y) (inner product is necessary). This
topology defines the topology of von Neumann algebra as a sub-algebra of B(H).

Denote by M ′ the commutant of M which is also algebra. Von Neumann’s bicommutant theorem
says that M equals to its own bi-commutant. Depending on whether the identity operator has a
finite trace or not, one distinguishes between algebras of type II1 and type II∞. II1 factor allow
trace with properties tr(Id) = 1, tr(xy) = tr(yx), and tr(x∗x) > 0, for all x 6= 0. Let L2(M) be
the Hilbert space obtained by completing M respect to the inner product defined 〈x|y〉 = tr(x∗y)
defines inner product in M interpreted as Hilbert space. The normalized trace induces a trace in
M ′, natural trace TrM ′ , which is however not necessarily normalized. JxJ defines an element of
M ′: if H = L2(M), the natural trace is given by TrM ′(JxJ) = trM (x) for all x ∈ M and bounded.

2.1.2 Basic classification of von Neumann algebras

Consider first some definitions. First of all, Hermitian operators with positive trace expressible as
products xx∗ are of special interest since their sums with positive coefficients are also positive.

In quantum mechanics Hermitian operators can be expressed in terms of projectors to the
eigen states. There is a natural partial order in the set of isomorphism classes of projectors by
inclusion: E < F if the image of H by E is contained to the image of H by a suitable isomorph
of F . Projectors are said to be metrically equivalent if there exist a partial isometry which maps
the images H by them to each other. In the finite-dimensional case metric equivalence means that
isomorphism classes are identical E = F .

The algebras possessing a minimal projection E0 satisfying E0 ≤ F for any F are called type
I algebras. Bounded operators of n-dimensional Hilbert space define algebras In whereas the
bounded operators of infinite-dimensional separable Hilbert space define the algebra I∞. In and
I∞ correspond to the operator algebras of quantum mechanics. The states of harmonic oscillator
correspond to a factor of type I.

The projection F is said to be finite if F < E and F ≡ E implies F = E. Hence metric
equivalence means identity. Simple von Neumann algebras possessing finite projections but no
minimal projections so that any projection E can be further decomposed as E = F +G, are called
factors of type II.

Hyper-finiteness means that any finite set of elements can be approximated arbitrary well with
the elements of a finite-dimensional sub-algebra. The hyper-finite II∞ algebra can be regarded as
a tensor product of hyper-finite II1 and I∞ algebras. Hyper-finite II1 algebra can be regarded as
a Clifford algebra of an infinite-dimensional separable Hilbert space sub-algebra of I∞.

Hyper-finite II1 algebra can be constructed using Clifford algebras C(2n) of 2n-dimensional
spaces and identifying the element x of 2n × 2n dimensional C(n) as the element diag(x, x)/2 of
2n+1 × 2n+1-dimensional C(n + 1). The union of algebras C(n) is formed and completed in the
weak operator topology to give a hyper-finite II1 factor. This algebra defines the Clifford algebra
of infinite-dimensional separable Hilbert space and is thus a sub-algebra of I∞ so that hyper-finite
II1 algebra is more regular than I∞.

von Neumann algebras possessing no finite projections (all traces are infinite or zero) are
called algebras of type III. It was later shown by Connes [46] that these algebras are labelled by
a parameter varying in the range [0, 1], and referred to as algebras of type IIIx. III1 category
contains a unique hyper-finite algebra. It has been found that the algebras of observables associated
with bounded regions of 4-dimensional Minkowski space in quantum field theories correspond to
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hyper-finite factors of type III1 [24]. Also statistical systems at finite temperature correspond to
factors of type III and temperature parameterizes one-parameter set of automorphisms of this
algebra [50]. Zero temperature limit correspond to I∞ factor and infinite temperature limit to II1

factor.

2.1.3 Non-commutative measure theory and non-commutative topologies and ge-
ometries

von Neumann algebras and C∗ algebras give rise to non-commutative generalizations of ordinary
measure theory (integration), topology, and geometry. It must be emphasized that these structures
are completely natural aspects of quantum theory. In particular, for the hyper-finite type II1

factors quantum groups and Kac Moody algebras [70] emerge quite naturally without any need
for ad hoc modifications such as making space-time coordinates non-commutative. The effective
2-dimensionality of quantum TGD (partonic or stringy 2-surfaces code for states) means that these
structures appear completely naturally in TGD framework.

2.1.4 Non-commutative measure theory

Von Neumann algebras define what might be a non-commutative generalization of measure theory
and probability theory [24].

1. Consider first the commutative case. Measure theory is something more general than topol-
ogy since the existence of measure (integral) does not necessitate topology. Any measurable
function f in the space L∞(X,µ) in measure space (X,µ) defines a bounded operator Mf

in the space B(L2(X, µ)) of bounded operators in the space L2(X, µ) of square integrable
functions with action of Mf defined as Mfg = fg.

2. Integral over M is very much like trace of an operator fx,y = f(x)δ(x, y). Thus trace is a
natural non-commutative generalization of integral (measure) to the non-commutative case
and defined for von Neumann algebras. In particular, generalization of probability measure
results if the case tr(Id) = 1 and algebras of type In and II1 are thus very natural from the
point of view of non-commutative probability theory.

The trace can be expressed in terms of a cyclic vector Ω or vacuum/ground state in physicist’s
terminology. Ω is said to be cyclic if the completion MΩ = H and separating if xΩ vanishes only
for x = 0. Ω is cyclic for M if and only if it is separating for M ′. The expression for the trace
given by

Tr(ab) =
(

(ab + ba)
2

, Ω
)

(1)

is symmetric and allows to defined also inner product as (a, b) = Tr(a∗b) in M. If Ω has unit
norm (Ω,Ω) = 1, unit operator has unit norm and the algebra is of type II1. Fermionic oscillator
operator algebra with discrete index labelling the oscillators defines II1 factor. Group algebra is
second example of II1 factor.

The notion of probability measure can be abstracted using the notion of state. State ω on a
C∗ algebra with unit is a positive linear functional on U , ω(1) = 1. By so called KMS construction
[24] any state ω in C∗ algebra U can be expressed as ω(x) = (π(x)Ω, Ω) for some cyclic vector Ω
and π is a homomorphism U → B(H).
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2.1.5 Non-commutative topology and geometry

C∗ algebras generalize in a well-defined sense ordinary topology to non-commutative topology.

1. In the Abelian case Gelfand Naimark theorem [24] states that there exists a contravariant
functor F from the category of unital abelian C∗ algebras and category of compact topological
spaces. The inverse of this functor assigns to space X the continuous functions f on X
with norm defined by the maximum of f . The functor assigns to these functions having
interpretation as eigen states of mutually commuting observables defined by the function
algebra. These eigen states are delta functions localized at single point of X. The points
of X label the eigenfunctions and thus define the spectrum and obviously span X. The
connection with topology comes from the fact that continuous map Y → X corresponds to
homomorphism C(X) → C(Y ).

2. In non-commutative topology the function algebra C(X) is replaced with a general C∗ al-
gebra. Spectrum is identified as labels of simultaneous eigen states of the Cartan algebra of
C∗ and defines what can be observed about non-commutative space X.

3. Non-commutative geometry can be very roughly said to correspond to ∗-subalgebras of C∗

algebras plus additional structure such as symmetries. The non-commutative geometry of
Connes [47] is a basic example here.

2.2 Basic facts about hyper-finite factors of type III

Hyper-finite factors of type II1, II∞ and III1, III0, IIIλ, λ ∈ (0, 1), allow by definition hierarchy
of finite approximations and are unique as von Neumann algebras. Also hyper-finite factors of
type II∞ and type III could be relevant for the formulation of TGD. HFFs of type II∞ and III
could appear at the level operator algebra but that at the level of quantum states one would obtain
HFFs of type II1. These extended factors inspire highly non-trivial conjectures about quantum
TGD. The book of Connes [47] provides a detailed view about von Neumann algebras in general.

2.2.1 Basic definitions and facts

A highly non-trivial result is that HFFs of type II∞ are expressible as tensor products II∞ =
II1 ⊗ I∞, where II1 is hyper-finite [47].

1. The existence of one-parameter family of outer automorphisms

The unique feature of factors of type III is the existence of one-parameter unitary group of
outer automorphisms. The automorphism group originates in the following manner.

1. Introduce the notion of linear functional in the algebra as a map ω : M→ C. ω is said to be
hermitian it respects conjugation inM; positive if it is consistent with the notion of positivity
for elements of M in which case it is called weight; state if it is positive and normalized
meaning that ω(1) = 1, faithful if ω(A) > 0 for all positive A; a trace if ω(AB) = ω(BA),
a vector state if ω(A) is ”vacuum expectation” ωΩ(A) = (Ω, ω(A)Ω) for a non-degenerate
representation (H, π) of M and some vector Ω ∈ H with ||Ω|| = 1.

2. The existence of trace is essential for hyper-finite factors of type II1. Trace does not ex-
ist for factors of type III and is replaced with the weaker notion of state. State defines
inner product via the formula (x, y) = φ(y∗x) and * is isometry of the inner product. *-
operator has property known as pre-closedness implying polar decomposition S = J∆1/2 of
its closure. ∆ is positive definite unbounded operator and J is isometry which restores the
symmetry between M and its commutant M′ in the Hilbert space Hφ, where M acts via
left multiplication: M′ = JMJ .
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3. The basic result of Tomita-Takesaki theory is that ∆ defines a one-parameter group σt
φ(x) =

∆itx∆−it of automorphisms of M since one has ∆itM∆−it = M. This unitary evolution is
an automorphism fixed apart from unitary automorphism A → UAU∗ related with the choice
of φ. For factors of type I and II this automorphism reduces to inner automorphism so that
the group of outer automorphisms is trivial as is also the outer automorphism associated with
ω. For factors of type III the group of these automorphisms divided by inner automorphisms
gives a one-parameter group of Out(M) of outer automorphisms, which does not depend at
all on the choice of the state φ.

More precisely, let ω be a normal faithful state: ω(x∗x) > 0 for any x. One can map M to L2(M)
defined as a completion of M by x → xΩ. The conjugation ∗ in M has image at Hilbert space level
as a map S0 : xΩ → x∗Ω. The closure of S0 is an anti-linear operator and has polar decomposition
S = J∆1/2, ∆ = SS∗. ∆ is positive self-adjoint operator and J anti-unitary involution. The
following conditions are satisfied

∆itM∆−it = M ,

JMJ = M′ . (2)

∆it is obviously analogous to the time evolution induced by positive definite Hamiltonian and
induces also the evolution of the expectation ω as π → ∆itπ∆−it. What makes this result thought
provoking is that it might mean a universal quantum dynamics apart from inner automorphisms
and thus a realization of general coordinate invariance and gauge invariance at the level of Hilbert
space.

2. Classification of HFFs of type III

Connes achieved an almost complete classification of hyper-finite factors of type III completed
later by others. He demonstrated that they are labelled by single parameter 0 ≤ λ ≤ 1] and that
factors of type IIIλ, 0 ≤ λ < 1 are unique. Haagerup showed the uniqueness for λ = 1. The idea
was that the the group has an invariant, the kernel T (M) of the map from time like R to Out(M),
consisting of those values of the parameter t for which σt

φ reduces to an inner automorphism and to
unity as outer automorphism. Connes also discovered also an invariant, which he called spectrum
S(M) of M identified as the intersection of spectra of ∆φ\{0}, which is closed multiplicative
subgroup of R+.

Connes showed that there are three cases according to whether S(M) is

1. R+, type III1

2. {λn, n ∈ Z}, type IIIλ.

3. {1}, type III0.

The value range of λ is this by convention. For the reversal of the automorphism it would
be that associated with 1/λ.

Connes constructed also an explicit representation of the factors 0 < λ < 1 as crossed product
II∞ factor N and group Z represented as powers of automorphism of II∞ factor inducing the
scaling of trace by λ. The classification of HFFs of type III reduced thus to the classification of
automorphisms of N ⊗B(H. In this sense the theory of HFFs of type III was reduced to that for
HFFs of type II∞ or even II1. The representation of Connes might be also physically interesting.

18



2.2.2 Probabilistic view about factors of type III

Second very concise representation of HFFs relies on thermodynamical thinking and realizes factors
as infinite tensor product of finite-dimensional matrix algebras acting on state spaces of finite
state systems with a varying and finite dimension n such that one assigns to each factor a density
matrix characterized by its eigen values. Intuitively one can think the finite matrix factors as
associated with n-state system characterized by its energies with density matrix ρ defining a
thermodynamics. The logarithm of the ρ defines the single particle quantum Hamiltonian as
H = log(ρ) and ∆ = ρ = exp(H) defines the automorphism σφ for each finite tensor factor as
exp(iHt). Obviously free field representation is in question.

Depending on the asymptotic behavior of the eigenvalue spectrum one obtains different factors
[47].

1. Factor of type I corresponds to ordinary thermodynamics for which the density matrix as a
function of matrix factor approaches sufficiently fast that for a system for which only ground
state has non-vanishing Boltzmann weight.

2. Factor of type II1 results if the density matrix approaches to identity matrix sufficiently fast.
This means that the states are completely degenerate which for ordinary thermodynamics
results only at the limit of infinite temperature. Spin glass could be a counterpart for this
kind of situation.

3. Factor of type III results if one of the eigenvalues is above some lower bound for all tensor
factors in such a manner that neither factor of type I or II1 results but thermodynamics for
systems having infinite number of degrees of freedom could yield this kind of situation.

This construction demonstrates how varied representations factors can have, a fact which might
look frustrating for a novice in the field. In particular, the infinite tensor power of M(2, C) with
state defined as an infinite tensor power of M(2, C) state assigning to the matrix A the complex
number (λ1/2A11 + λ−1/2 φ(A) = A22)/(λ1/2 + λ−1/2) defines HFF IIIλ [66, 47]. Formally the
same algebra which for λ = 1 gives ordinary trace and HFF of type II1, gives III factor only by
replacing trace with state. This simple model was discovered by Powers in 1967.

It is indeed the notion of state or thermodynamics is what distinguishes between factors. This
looks somewhat weird unless one realizes that the Hilbert space inner product is defined by the
”thermodynamical” state φ and thus probability distribution for operators and for their thermal
expectation values. Inner product in turn defines the notion of norm and thus of continuity and it
is this notion which differs dramatically for λ = 1 and λ < 1 so that the completions of the algebra
differ dramatically.

In particular, there is no sign about I∞ tensor factor or crossed product with Z represented
as automorphisms inducing the scaling of trace by λ. By taking tensor product of I∞ factor
represented as tensor power with induces running from −∞ to 0 and II1 HFF with indices running
from 1 to ∞ one can make explicit the representation of the automorphism of II∞ factor inducing
scaling of trace by λ and transforming matrix factors possessing trace given by square root of index
M : N to those with trace 2.

2.3 Joint modular structure and sectors

Let N ⊂M be an inclusion. The unitary operator γ = JNJM defines a canonical endomorphisms
M → N in the sense that it depends only up to inner automorphism on N , γ defines a sector of
M. The sectors of M are defined as Sect(M) = End(M)/Inn(M) and form a semi-ring with
respected to direct sum and composition by the usual operator product. It allows also conjugation.

L2(M) is a normal bi-module in the sense that it allows commuting left and right multiplica-
tions. For a, b ∈ M and x ∈ L2(M) these multiplications are defined as axb = aJb∗Jx and it is easy
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to verify the commutativity using the factor Jy∗J ∈ M′. Connes [47] has shown that all normal
bi-modules arise in this way up to unitary equivalence so that representation concepts make sense.
It is possible to assign to any endomorphism ρ index Ind(ρ) ≡ M : ρ(M). This means that the
sectors are in 1-1 correspondence with inclusions. For instance, in the case of hyper-finite II1 they
are labelled by Jones index. Furthermore, the objects with non-integral dimension

√
[M : ρ(M)]

can be identified as quantum groups, loop groups, infinite-dimensional Lie algebras, etc...

2.4 About inclusions of hyper-finite factors of type II1

Many names have been assigned to inclusions: Jones, Wenzl, Ocneacnu, Pimsner-Popa, Wasserman
[69]. It would seem to me that the notion Jones inclusion includes them all so that various
names would correspond to different concrete realizations of the inclusions conjugate under outer
automorphisms.

1. According to [69] for inclusions with M : N ≤ 4 (with A
(1)
1 excluded) there exists a countable

infinity of sub-factors with are pairwise non inner conjugate but conjugate to N .

2. Also for any finite group G and its outer action there exists uncountably many sub-factors
which are pairwise non inner conjugate but conjugate to the fixed point algebra of G [69].
For any amenable group G the the inclusion is also unique apart from outer automorphism
[60].

Thus it seems that not only Jones inclusions but also more general inclusions are unique apart
from outer automorphism.

Any *-endomorphism σ, which is unit preserving, faithful, and weakly continuous, defines a
sub-factor of type II1 factor [69]. The construction of Jones leads to a atandard inclusion sequence
N ⊂ M ⊂ M1 ⊂ .... This sequence means addition of projectors ei, i < 0, having visualization
as an addition of braid strand in braid picture. This hierarchy exists for all factors of type II.
At the limit M∞ = ∪iMi the braid sequence extends from −∞ to ∞. Inclusion hierarchy can
be understood as a hierarchy of Connes tensor powers M⊗N M.... ⊗N M. Also the ordinary
tensor powers of hyper-finite factors of type II1 (HFF) as well as their tensor products with finite-
dimensional matrix algebras are isomorphic to the original HFF so that these objects share the
magic of fractals.

Under certain assumptions the hierarchy can be continued also in opposite direction. For a
finite index an infinite inclusion hierarchy of factors results with the same value of index. σ is
said to be basic if it can be extended to *-endomorphisms from M1 to M. This means that
the hierarchy of inclusions can be continued in the opposite direction: this means elimination of
strands in the braid picture. For finite factors (as opposed to hyper-finite ones) there are no basic
*-endomorphisms of M having fixed point algebra of non-abelian G as a sub-factor [69].

1. Jones inclusions

For hyper-finite factors of type II1 Jones inclusions allow basic *-endomorphism. They exist
for all values of M : N = r with r ∈ {4cos2(π/n)|n ≥ 3} ∩ [4,∞) [69]. They are defined for an
algebra defined by projectors ei, i ≥ 1. All but nearest neighbor projectors commute. λ = 1/r
appears in the relations for the generators of the algebra given by eiejei = λei, |i−j| = 1. N ⊂M
is identified as the double commutator of algebra generated by ei, i ≥ 2.

This means that principal graph and its dual are equivalent and the braid defined by projectors
can be continued not only to −∞ but that also the dropping of arbitrary number of strands is
possible [69]. It would seem that ADE property of the principal graph meaning single root length
codes for the duality in the case of r ≤ 4 inclusions.

Irreducibility holds true for r < 4 in the sense that the intersection of Q′∩P = P ′∩P = C. For
r ≥ 4 one has dim(Q′∩P ) = 2. The operators commuting with Q contain besides identify operator
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of Q also the identify operator of P . Q would contain a single finite-dimensional matrix factor less
than P in this case. Basic *-endomorphisms with σ(P ) = Q is σ(ei) = ei+1. The difference between
genuine symmetries of quantum TGD and symmetries which can be mimicked by TGD could
relate to the irreducibility for r < 4 and raise these inclusions in a unique position. This difference
could partially justify the hypothesis [A9] that only the groups Ga × Gb ⊂ SU(2) × SU(2) ⊂
SL(2, C)× SU(3) define orbifold coverings of H± = M4

± × CP2 → H±/Ga ×Gb.

2. Wasserman’s inclusion

Wasserman’s construction of r = 4 factors clarifies the role of the subgroup of G ⊂ SU(2) for
these inclusions. Also now r = 4 inclusion is characterized by a discrete subgroup G ⊂ SU(2) and
is given by (1⊗M)G ⊂ (M2(C)×M)G. According to [69] Jones inclusions are irreducible also for
r = 4. The definition of Wasserman inclusion for r = 4 seems however to imply that the identity
matrices of both MG and (M(2, C) ⊗M)G commute with MG so that the inclusion should be
reducible for r = 4.

Note that G leaves both the elements of N and M invariant whereas SU(2) leaves the elements
of N invariant. M(2, C) is effectively replaced with the orbifold M(2, C)/G, with G acting as
automoprhisms. The space of these orbits has complex dimension d = 4 for finite G.

For r < 4 inclusion is defined as MG ⊂ M . The representation of G as outer automorphism
must change step by step in the inclusion sequence ... ⊂ N ⊂M ⊂ ... since otherwise G would act
trivially as one proceeds in the inclusion sequence. This is true since each step brings in additional
finite-dimensional tensor factor in which G acts as automorphisms so that although M can be
invariant under GM it is not invariant under GN .

These two inclusions might accompany each other in TGD based physics. One could consider
r < 4 inclusion N = MG ⊂M with G acting non-trivially in M/N quantum Clifford algebra. N
would decompose by r = 4 inclusion to N1 ⊂ N with SU(2) taking the role of G. N/N1 quantum
Clifford algebra would transform non-trivially under SU(2) but would be G singlet.

In TGD framework the G-invariance for SU(2) representations means a reduction of S2 to the
orbifold S2/G. The coverings H± → H±/Ga × Gb should relate to these double inclusions and
SU(2) inclusion could mean Kac-Moody type gauge symmetry for N . Note that the presence of
the factor containing only unit matrix should relate directly to the generator d in the generator
set of affine algebra in the McKay construction [27]. The physical interpretation of the fact that
almost all ADE type extended diagrams (D(1)

n must have n ≥ 4) are allowed for r = 4 inclusions
whereas D2n+1 and E6 are not allowed for r < 4, remains open.

3 Hyper-finite factors and TGD

The basic question is whether only hyper-finite factors of type II1 appear in TGD framework.
Affirmative answer would allow to interpret physical S-matrix as time like entanglement coefficients
rather than only a cognitive representation of S-matrix in fermionic degrees of freedom analogous
to representations of Boolean functions.

3.1 Generalization of the notion of imbedding space?

The original idea was that the proposed modification of the imbedding space could explain natu-
rally phenomena like quantum Hall effect involving fractionization of quantum numbers like spin
and charge. This does not however seem to be the case. Ga×Gb implies just the opposite if these
quantum numbers are assigned with the symmetries of the imbedding space. For instance, quanti-
zation unit for orbital angular momentum becomes na where Zna is the maximal cyclic subgroup
of Ga.
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One can however imagine of obtaining fractionization at the level of imbedding space for space-
time sheets, which are analogous to multi-sheeted Riemann surfaces (say Riemann surfaces associ-
ated with z1/n since the rotation by 2π understood as a homotopy of M4 lifted to the space-time
sheet is a non-closed curve. Continuity requirement indeed allows fractionization of the orbital
quantum numbers and color in this kind of situation.

3.1.1 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in some sense to replace
H or its factors by their multiple coverings.

1. This is certainly not possible for M4, CP2, or H since their fundamental groups are trivial.
On the other hand, the fixing of quantization axes implies a selection of the sub-space H4 =
M2 × S2 ⊂ M4 × CP2, where S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 =
CP2\S2 have fundamental group Z since the codimension of the excluded sub-manifold is
equal to two and homotopically the situation is like that for a punctured plane. The exclusion
of these sub-manifolds defined by the choice of quantization axes could naturally give rise to
the desired situation.

2. H4 represents a straight cosmic string. Quantum field theory phase corresponds to Jones
inclusions with Jones index M : N < 4. Stringy phase would by previous arguments corre-
spond to M : N = 4. Also these Jones inclusions are labelled by finite subgroups of SO(3)
and thus by Zn identified as a maximal Abelian subgroup.

One can argue that cosmic strings are not allowed in QFT phase. This would encourage the
replacement M̂4× ˆCP2 implying that surfaces in M4×S2 and M2×CP2 are not allowed. In
particular, cosmic strings and CP2 type extremals with M4 projection in M2 and thus light-
like geodesic without zitterwebegung essential for massivation are forbidden. This brings in
mind instability of Higgs=0 phase.

3. The covering spaces in question would correspond to the Cartesian products M̂4
na× ˆCP2nb

of
the covering spaces of M̂4 and ˆCP2 by Zna and Znb

with fundamental group is Zna×Znb
. One

can also consider extension by replacing M2 and S2 with its orbit under Ga (say tedrahedral,
octahedral, or icosahedral group). The resulting space will be denoted by M̂4×̂Ga resp.

ˆCP2×̂Gb.

4. One expects the discrete subgroups of SU(2) emerge naturally in this framework if one allows
the action of these groups on the singular sub-manifolds M2 or S2. This would replace
the singular manifold with a set of its rotated copies in the case that the subgroups have
genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices
of tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy
groups into the picture in a natural manner.

5. Also the orbifolds M̂4/Ga × ˆCP2/Gb can be allowed as also the spaces M̂4/Ga × ( ˆCP2×̂Gb)
and (M̂4×̂Ga) × ˆCP2/Gb. Hence the previous framework would generalize considerably by
the allowance of both coset spaces and covering spaces.

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the imbedding space to another one.
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1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that
the covariant metric of M4 factor proportional to h̄2 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of M4 metric
can make sense. This is consistent with the identical vanishing of Chern-Simons action in
M2 × S2.

2. One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M4 degrees of freedom. This is not the
case. Light-likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M2×S2 irrespective of the value of Planck constant
requires that X2 has single point of M2 as M2 projection. Hence no sudden change of the
size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunnelling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to ho-
mologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of partonic 2-surfaces

with vanishing total homology charge (Kähler magnetic charge) can in principle move from
sector to another one, and this process involves fusion of these 2-surfaces such that CP2

projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic
sphere S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy flattening the

piece of S2 to curve. If this homotopy cannot be chosen to be light-like, the phase transitions
changing Planck constant take place only via quantum tunnelling. Obviously the notions of
light-like homotopies (cobordisms) and classical light-like homotopies (cobordisms) are very
relevant for the understanding of phase transitions changing Planck constant.

3.1.2 Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of these two kinds of spaces?

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4 and one
can assign a hierarchy of subgroups of SU(2) with both of them. In particular, their maximal
Abelian subgroups Zn label these inclusions. The interpretation of Zn as invariance group is
natural for M : N < 4 and it naturally corresponds to the coset spaces. For M : N = 4 the
interpretation of Zn has remained open. Obviously the interpretation of Zn as the homology
group defining covering would be natural.

2. M : N = 4 should correspond to the allowance of cosmic strings and other analogous objects.
Does the introduction of the covering spaces bring in cosmic strings in some controlled
manner? Formally the subgroup of SU(2) defining the inclusion is SU(2) would mean that
states are SU(2) singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber and the degrees
of freedom in question would not disappear completely and would be characterized by the
discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial connection with a flat
curvature and the non-trivial dynamics of topological QFTs. Also now one might expect
similar non-trivial contribution to appear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb.
In conformal field theory models non-trivial monodromy would correspond to the presence
of punctures in plane.
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3. For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb

and multiplication and division are expected to relate to Jones inclusions with M : N < 4
and M : N = 4, which both are labelled by a subset of discrete subgroups of SU(2).

4. The discrete subgroups of SU(2) with fixed quantization axes possess a well defined multipli-
cation with product defined as the group generated by forming all possible products of group
elements as elements of SU(2). This product is commutative and all elements are idempo-
tent and thus analogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral, octahedral, and
icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (”rig”). The trivial group G1, two-element group G2¡ generated by
reflection, and tedrahedral, octahedral, and icosahedral groups define 5 generating elements
for this algebra. The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate a structure analogous
to natural numbers acting as analog of coefficients of this structure. Clearly, one has effec-
tively 11-dimensional commutative algebra in 1-1 correspondence with the 11-dimensional
”half-lattice” N11 (N denotes natural numbers). Leaving away reflections, one obtains N7.
The projector representation suggests a connection with Jones inclusions. An interesting
question concerns the possible Jones inclusions assignable to the subgroups containing in-
finitely manner elements. Reader has of course already asked whether dimensions 11, 7 and
their difference 4 might relate somehow to the mathematical structures of M-theory with 7
compactified dimensions. One could introduce generalized configuration space spinor fields
in the configuration space labelled by sectors of H with given quantization axes. By intro-
ducing Fourier transform in N11 one would formally obtain an infinite-component field in
11-D space.

5. How do the Planck constants associated with factors and coverings relate? One might argue
that Planck constant defines a homomorphism respecting the multiplication and division
(when possible) by Gi. If so, then Planck constant in units of h̄0 would be equal to na/nb for
Ĥ/Ga×Gb option and nb/na for Ĥ×̂(Ga×Gb) with obvious formulas for hybrid cases. This
option would put M4 and CP2 in a very symmetric role and allow much more flexibility in
the identification of symmetries associated with large Planck constant phases.

3.1.3 Fractional Quantum Hall effect

The generalization of the imbedding space allows to understand fractional quantum Hall effect
[80]. The formula for the quantized Hall conductance is given by

σ = ν × e2

h
,

ν =
n

m
. (3)

Series of fractions in ν = 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, 7/15..., 2/3, 3/5, 4/7, 5/9, 6/11, 7/13..., 5/3, 8/5, 11/7, 14/9...4/3, 7/5, 10/7, 13/9...,
1/5, 2/9, 3/13..., 2/7, 3/11..., 1/7.... with odd denominator have been observed as are also ν = 1/2
and ν = 5/2 states with even denominator [80].

The model of Laughlin [78, 79] cannot explain all aspects of FQHE. The best existing model
proposed originally by Jain is based on composite fermions resulting as bound states of electron
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and even number of magnetic flux quanta [81]. Electrons remain integer charged but due to the
effective magnetic field electrons appear to have fractional charges. Composite fermion picture
predicts all the observed fractions and also their relative intensities and the order in which they
appear as the quality of sample improves.

In [E9] I have proposed a possible TGD based model of FQHE not involving hierarchy of
Planck constants. The generalization of the notion of imbedding space suggests also the possibility
to interpret these states in terms of fractionized charge and electron number.

1. The easiest manner to understand the observed fractions is by assuming that both M4

and CP2 correspond to covering spaces so that both spin and electric charge and fermion
number are quantized. With this assumption the expression for the Planck constant becomes
h̄/h̄0 = nb/na and charge and spin units are equal to 1/nb and 1/na respectively. This gives
ν = nna/n2

b . The values m = 2, 3, 5, 7, .. are observed. Planck constant can have arbitrarily
large values. There are general arguments stating that also spin is fractionized in FQHE and
for na = knb required by the observed values of ν charge fractionization occurs in units of
k/nb and forces also spin fractionization. For factor space option in M4 degrees of freedom
one would have ν = n/nan2

b .

2. The appearance of nb = 2 would suggest that also Z2 appears as the homotopy group of
the covering space: filling fraction 1/2 corresponds in the composite fermion model and also
experimentally to the limit of zero magnetic field [81]. Also ν = 5/2 has been observed [82].

3. A possible problematic aspect of the TGD based model is the experimental absence of even
values of nb except nb = 2. A possible explanation is that by some symmetry condition pos-
sibly related to fermionic statistics kn/nb must reduce to a rational with an odd denominator
for nb > 2. In other words, one has k ∝ 2r, where 2r the largest power of 2 divisor of nb

smaller than nb.

4. Large values of nb emerge as B increases. This can be understood from flux quantization.
One has eBS = nh̄ = n(nb/na)h̄0. The interpretation is that each of the nb sheets contributes
n/na units to the flux. As B increases also the flux increases for a fixed value of na and
area S. Note that the value of magnetic field in given sheet is not affected so that the
build-up of multiple covering seems to keep magnetic field strength below critical value. For
na = knb one obtains eBS/h̄0 = n/k so that a fractionization of magnetic flux results and
each sheet contributes 1/knb units to the flux. ν = 1/2 corresponds to k = 1, nb = 2 and to
non-vanishing magnetic flux unlike in the case of composite fermion model.

5. The understanding of the thermal stability is not trivial. The original FQHE was observed
in 80 mK temperature corresponding roughly to a thermal energy of T ∼ 10−5 eV. For
graphene the effect is observed at room temperature. Cyclotron energy for electron is (from
fe = 6×105 Hz at B = .2 Gauss) of order thermal energy at room temperature in a magnetic
field varying in the range 1-10 Tesla. This raises the question why the original FQHE requires
so low temperature. The magnetic energy of a flux tube of length L is by flux quantization
roughly e2B2S ∼ Ec(e)meL (h̄0 = c = 1) and exceeds cyclotron roughly by a factor L/Le,
Le electron Compton length so that thermal stability of magnetic flux quanta is not the
explanation. A possible explanation is that since FQHE involves several values of Planck
constant, it is quantum critical phenomenon and is characterized by a critical temperature.
The differences of the energies associated with the phase with ordinary Planck constant and
phases with different Planck constant would characterize the transition temperature.
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3.1.4 What is the role of dimensions?

Could the dimensions of M4 and CP2 and the dimensions of spaces defined by the choice of
the quantization axes play a fundamental role in the construction from the constraint that the
fundamental group is non-trivial?

1. Suppose that the sub-manifold in question is geodesic sub-manifold containing the orbits of
its points under Cartan subgroup defining quantization axes. A stronger assumption would
be that the orbit of maximal compact subgroup is in question.

2. For M2n Cartan group contains translations in time direction with orbit M1 and Cartan
subgroup of SO(2n − 1) and would be Mn so that M̂2n would have a trivial fundamental
group for n > 2. Same result applies in massless case for which one has SO(1, 1)×SO(2n−2)
acts as Cartan subgroup. The orbit under maximal compact subgroup would not be in
question.

3. For CP2 homologically non-trivial geodesic sphere CP1 contains orbits of the Cartan sub-
group. For CPn = SU(n + 1)/SU(n) × U(1) having real dimension 2n the sub-manifold
CPn−1 contains orbits of the Cartan subgroup and defines a sub-manifold with codimension
2 so that the dimensional restriction does not appear.

4. For spheres Sn−1 = SO(n)/SO(n−1) the dimension is n−1 and orbit of SO(n−1) of point
left fixed by Cartan subgroup SO(2)× .. would for n = 2 consist of two points and Sn−2 in
more general case. Again co-dimension 2 condition would be satisfied.

3.1.5 What about holes of the configuration space?

One can raise analogous questions at the level of configuration space geometry. Vacuum extremals
correspond to Lagrangian sub-manifolds Y 2 ⊂ CP2 with vanishing induced Kähler form. They
correspond to singularities of the configuration space (”world of classical worlds”) and configura-
tion space spinor fields should vanish for the vacuum extremals. Effectively this would mean a hole
in configuration space, and the question is whether this hole could also naturally lead to the intro-
duction of covering spaces and factor spaces of the configuration spaces. How much information
about the general structure of the theory just this kind of decomposition might allow to deduce?
This kind of singularities are infinite-dimensional variants of those discussed in catastrophe theory
and this suggests that their understanding might be crucial.

3.2 What kind of hyper-finite factors one can imagine in TGD?

The working hypothesis has been that only hyper-finite factors of type II1 appear in TGD. The
basic motivation has been that they allow a new view about S-matrix as an operator representable
as time-like entanglement coefficients of zero energy states so that physical states would represent
laws of physics in their structure. They allow also the introduction of the notion of measurement
resolution directly to the definition of reaction probabilities by using Jones inclusion and the
replacement of state space with a finite-dimensional state space defined by quantum spinors. This
hypothesis is of course just an attractive working hypothesis and deserves to be challenged.

3.2.1 Configuration space spinors

For configuration space spinors the HFF II1 property is very natural because of the properties of
infinite-dimensional Clifford algebra and the inner product defined by the configuration space ge-
ometry does not allow other factors than this. A good guess is that the values of conformal weights
label the factors appearing in the tensor power defining configuration space spinors. Because of
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the non-degeneracy and super-canonical symmetries the density matrix representing metric must
be essentially unit matrix for each conformal weight which would be the defining characteristic of
hyper-finite factor of type II1.

3.2.2 Bosonic degrees of freedom

The bosonic part of the super-canonical algebra consists of Hamiltonians of CH in one-one corre-
spondence with those of δM4

±×CP2. Also the Kac-Moody algebra acting leaving the light-likeness
of the partonic 3-surfaces intact contributes to the bosonic degrees of freedom. The commuta-
tor of these algebras annihilates physical states and there are also Virasoro conditions associated
with ordinary conformal symmetries of partonic 2-surface [C1]. The labels of Hamiltonians of
configuration space and spin indices contribute to bosonic degrees of freedom.

Hyper-finite factors of type II1 result naturally if the system is an infinite tensor product finite-
dimensional matrix algebra associated with finite dimensional systems [47]. Unfortunately, neither
Virasoro, canonical nor Kac-Moody algebras do have decomposition into this kind of infinite tensor
product. If bosonic degrees for super-canonical and super-Kac Moody algebra indeed give I∞ factor
one has HFF if type II∞. This looks the most natural option but threatens to spoil the beautiful
idea about S-matrix as time-like entanglement coefficients between positive and negative energy
parts of zero energy state.

The resolution of the problem is surprisingly simple and trivial after one has discovered it. The
requirement that state is normalizable forces to project S-matrix to a finite-dimensional sub-space
in bosonic degrees of freedom so that the reduction I∞ → In occurs and one has the reduction
II∞ → II1 × In = II1 to the desired HFF.

One can consider also the possibility of taking the limit n → ∞. One could indeed say that
since I∞ factor can be mapped to an infinite tensor power of M(2, C) characterized by a state
which is not trace, it is possible to map this representation to HFF by replacing state with trace
[47]. The question is whether the forcing the bosonic foot to fermionic shoe is physically natural.
One could also regard the II1 type notion of probability as fundamental and also argue that it is
required by full super-symmetry realized also at the level of many-particle states rather than mere
single particle states.

3.2.3 How the bosonic cutoff is realized?

Normalizability of state requires that projection to a finite-dimensional bosonic sub-space is car-
ried out for the bosonic part of the S-matrix. This requires a cutoff in quantum numbers of
super-conformal algebras. The cutoff for the values of conformal weight could be formulated by
replacing integers with Zn or with some finite field G(p, 1). The cutoff for the labels associated
with Hamiltonians defined as an upper bound for the dimension of the representation looks also
natural.

Number theoretical braids which are discrete and finite structures would define space-time
correlate for this cutoff. p-Adic length scale p ' 2k hypothesis could be interpreted as stating
the fact that only powers of p up to pk are significant in p-adic thermodynamics which would
correspond to finite field G(k, 1) if k is prime. This has no consequences for p-adic mass calculations
since already the first two terms give practically exact results for the large primes associated with
elementary particles [6].

Finite number of strands for the theoretical braids would serve as a correlate for the reduction
of the representation of Galois group S∞ of rationals to an infinite produce of diagonal copies of
finite-dimensional Galois group so that same braid would repeat itself like a unit cell of lattice i
condensed matter [27].
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3.2.4 HFF of type III for field operators and HFF of type II1 for states?

One could also argue that the Hamiltonians with fixed conformal weight are included in fermionic
II1 factor and bosonic factor I∞ factor, and that the inclusion of conformal weights leads to a
factor of type III. Conformal weight could relate to the integer appearing in the crossed product
representation III = Z ×cr II∞ of HFF of type III [47].

The value of conformal weight is non-negative for physical states which suggests that Z reduces
to semigroup N so that a factor of type III would reduce to a factor of type II∞ since trace would
become finite. If unitary process corresponds to an automorphism for II∞ factor, the action
of automorphisms affecting scaling must be uni-directional. Also thermodynamical irreversibility
suggests the same. The assumption that state function reduction for positive energy part of state
implies unitary process for negative energy state and vice versa would only mean that the shifts
for positive and negative energy parts of state are opposite so that Z → N reduction would still
hold true.

3.2.5 HFF of type II1 for the maxima of Kähler function?

Probabilistic interpretation allows to gain heuristic insights about whether and how hyper-finite
factors of type type II1 might be associated with configuration space degrees of freedom. They
can appear both in quantum fluctuating degrees of freedom associated with a given maximum of
Kähler function and in the discrete space of maxima of Kähler function.

Spin glass degeneracy is the basic prediction of classical TGD and means that instead of a
single maximum of Kähler function analogous to single free energy minimum of a thermodynamical
system there is a fractal spin glass energy landscape with valleys inside valleys. The discretization
of the configuration space in terms of the maxima of Kähler function crucial for the p-adicization
problem, leads to the analog of spin glass energy landscape and hyper-finite factor of type II1

might be the appropriate description of the situation.
The presence of the tensor product structure is a powerful additional constraint and something

analogous to this should emerge in configuration space degrees of freedom. Fractality of the many-
sheeted space-time is a natural candidate here since the decomposition of the original geometric
structure to parts and replacing them with the scaled down variant of original structure is the
geometric analog of forming a tensor power of the original structure.

3.3 Direct sum of HFFs of type II1 as a minimal option

HFF II1 property for the Clifford algebra of the configuration space means a definite distinction
from the ordinary Clifford algebra defined by the fermionic oscillator operators since the trace
of the unit matrix of the Clifford algebra is normalized to one. This does not affect the anti-
commutation relations at the basic level and delta functions can appear in them at space-time
level. At the level of momentum space I∞ property requires discrete basis and anti-commutators
involve only Kronecker deltas. This conforms with the fact that HFF of type II1 can be identified
as the Clifford algebra associated with a separable Hilbert space.

3.3.1 II∞ factor or direct sum of HFFs of type II1?

The expectation is that super-canonical algebra is a direct sum over HFFs of type II1 labelled by the
radial conformal weight. In the same manner the algebra defined by fermionic anti-commutation
relations at partonic 2-surface would decompose to a direct sum of algebras labelled by the con-
formal weight associated with the light-like coordinate of X3

l . Super-conformal symmetry suggests
that also the configuration space degrees of freedom correspond to a direct sum of HFFs of type
II1.
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One can of course ask why not II∞ = I∞× II1 structures so that one would have single factor
rather than a direct sum of factors.

1. The physical motivation is that the direct sum property allow to decompose M-matrix to
direct summands associated with various sectors with weights whose moduli squared have
an interpretation in terms of the density matrix. This is also consistent with p-adic thermo-
dynamics where conformal weights take the place of energy eigen values.

2. II∞ property would predict automorphisms scaling the trace by an arbitrary positive real
number λ ∈ R+. These automorphisms would require the scaling of the trace of the projectors
of Clifford algebra having values in the range [0, 1] and it is difficult to imagine how these
automorphisms could be realized geometrically.

3.3.2 How HFF property reflects itself in the construction of geometry of WCW?

The interesting question is what HFF property and finite measurement resolution realizing itself as
the use of projection operators means concretely at the level of the configuration space geometry.

Super-Hamiltonians define the Clifford algebra of the configuration space. Super-conformal
symmetry suggests that the unavoidable restriction to projection operators instead of complex
rays is realized also configuration space degrees of freedom. Of course, infinite precision in the
determination of the shape of 3-surface would be physically a completely unrealistic idea.

In the fermionic situation the anti-commutators for the gamma matrices associated with con-
figuration space individual Hamiltonians in 3-D sense are replaced with anti-commutators where
Hamiltonians are replaced with projectors to subspaces of the space spanned by Hamiltonians.
This projection is realized by restricting the anti-commutator to partonic 2-surfaces so that the
anti-commutator depends only the restriction of the Hamiltonian to those surfaces.

What is interesting that the measurement resolution has a concrete particle physical meaning
since the parton content of the system characterizes the projection. The larger the number of par-
tons, the better the resolution about configuration space degrees of freedom is. The degeneracy of
configuration space metric would be interpreted in terms of finite measurement resolution inherent
to HFFs of type II1, which is not due to Jones inclusions but due to the fact that one can project
only to infinite-D subspaces rather than complex rays.

Effective 2-dimensionality in the sense that configuration space Hamiltonians reduce to func-
tionals of the partonic 2-surfaces of X3

l rather than functionals of X3
l could be interpreted in

this manner. For a wide class of Hamiltonians actually effective 1-dimensionality holds true in
accordance with conformal invariance.

The generalization of configuration space Hamiltonians and super-Hamiltonians by allowing
integrals over the 2-D boundaries of the patches of X3

l would be natural and is suggested by the
requirement of discretized 3-dimensionality at the level of configuration space.

By quantum classical correspondence the inclusions of HFFs related to the measurement reso-
lution should also have a geometric description. Measurement resolution corresponds to braids in
given time scale and as already explained there is a hierarchy of braids in time scales coming as neg-
ative powers of two corresponding to the addition of zero energy components to positive/negative
energy state. Note however that particle reactions understood as decays and fusions of braid
strands could also lead to a notion of measurement resolution.

3.4 Could HFFs of type III have application in TGD framework?

One can imagine several manners for how HFFs of type III could emerge in TGD although the
proposed view about S-matrix in zero energy ontology suggests that HFFs of type III1 should be
only an auxiliary tool at best. Both TGD inspired quantum measurement theory, the idea about a
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variant of HFF of type II1 analogous to a local gauge algebra, and some other arguments, suggest
that HFFs of type III could be seen as a useful idealization allowing to make non-trivial conjectures
both about quantum TGD and about HFFs of type III. Quantum fields would correspond to HFFs
of type III and II∞ whereas physical states (S-matrix) would correspond to HFF of type II1.

3.4.1 Quantum measurement theory and HFFs of type III

The attempt to interpret the HFFs of type III in terms of quantum measurement theory based
on Jones inclusions leads to highly non-trivial conjectures about these factors.

1. Could the scalings of trace relate to quantum measurements?

What should be understood is the physical meaning of the automorphism inducing the scaling
of trace. In the representation based of factors based on infinite tensor powers the action of g
should transform single n× n matrix factor with density matrix Id/n to a density matrix e11 of a
pure state.

Obviously the number of degrees of freedom is affected and this can be interpreted in terms of
appearance or disappearance of correlations. Quantization and emergence of non-commutativity
indeed implies the emergence of correlations and effective reduction of degrees of freedom. In
particular, the fundamental quantum Clifford algebra has reduced dimension M : N = r ≤ 4
instead of r = 4 since the replacement of complex valued matrix elements with N valued ones
implies non-commutativity and correlations.

The transformation would be induced by the shift of finite-dimensional state to right or left so
that the number of matrix factors overlapping with I∞ part increases or is reduced. Could it have
interpretation in terms of quantum measurement for a quantum Clifford factor? Could quantum
measurement for M/N degrees of freedom reducing the state in these degrees of freedom to a
pure state be interpreted as a transformation of single finite-dimensional matrix factor to a type I
factor inducing the scaling of the trace and could the scalings associated with automorphisms of
HFFs of type III also be interpreted in terms of quantum measurement?

This interpretation does not as such say anything about HFF factors of type III since only a
decomposition of II1 factor to Ik

2 factor and II1 factor with a reduced trace of projector to the
latter. However, one can ask whether the scaling of trace for HFFs of type III could correspond
to a situation in which infinite number of finite-dimensional factors have been quantum measured.
This would correspond to the inclusion N ⊂M∞ = ∪nMn where N ⊂M ⊂ ...Mn... defines the
canonical inclusion sequence. Physicist can of course ask whether the presence of infinite number
of I2-, or more generally, In-factors is at all relevant to quantum measurement and it has already
become clear that situation at the level of S-matrix reduces to In.

2. Could the theory of HHFs of type III relate to the theory of Jones inclusions?

The idea about a connection of HFFs of type III and quantum measurement theory seems to
be consistent with the basic facts about inclusions and HFFs of type III1.

1. Quantum measurement would scale the trace by a factor 2k/
√M : N since the trace would

become a product for the trace of the projector to the newly born M(2, C)⊗k factor and
the trace for the projection to N given by 1/

√M : N . The continuous range of values
M : N ≥ 4 gives good hopes that all values of λ are realized. The prediction would be that
2k
√M : N ≥ 1 holds always true.

2. The values M : N ∈ {rn = 4cos2(π/n)} for which the single M(2, C) factor emerges in
state function reduction would define preferred values of the inverse of λ =

√
M : N/4

parameterizing factors IIIλ. These preferred values vary in the range [1/2, 1].
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3. λ = 1 at the end of continuum would correspond to HFF III1 and to Jones inclusions defined
by infinite cyclic subgroups dense in U(1) ⊂ SU(2) and this group combined with reflection.
These groups correspond to the Dynkin diagrams A∞ and D∞. Also the classical values
of M : N = n2 characterizing the dimension of the quantum Clifford M : N are possible.
In this case the scaling of trace would be trivial since the factor n to the trace would be
compensated by the factor 1/n due to the disappearance of M/N factor III1 factor.

4. Inclusions with M : N = ∞ are also possible and they would correspond to λ = 0 so that
also III0 factor would also have a natural identification in this framework. These factors
correspond to ergodic systems and one might perhaps argue that quantum measurement in
this case would give infinite amount of information.

5. This picture makes sense also physically. p-Adic thermodynamics for the representations of
super-conformal algebra could be formulated in terms of factors of type I∞ and in excellent
approximation using factors In. The generation of arbitrary number of type II1 factors in
quantum measurement allow this possibility.

3. The end points of spectrum of preferred values of λ are physically special

The fact that the end points of the spectrum of preferred values of λ are physically special,
supports the hopes that this picture might have something to do with reality.

1. The Jones inclusion with q = exp(iπ/n), n = 3 (with principal diagram reducing to a Dynkin
diagram of group SU(3)) corresponds to λ = 1/2, which corresponds to HFF III1 differing
in essential manner from factors IIIλ, λ < 1. On the other hand, SU(3) corresponds to
color group which appears as an isometry group and important subgroup of automorphisms
of octonions thus differs physically from the ADE gauge groups predicted to be realized
dynamically by the TGD based view about McKay correspondence [27].

2. For r = 4 SU(2) inclusion parameterized by extended ADE diagrams M(2, C)⊗2 would be
created in the state function reduction and also this would give λ = 1/2 and scaling by
a factor of 2. Hence the end points of the range of discrete spectrum would correspond
to the same scaling factor and same HFF of type III. SU(2) could be interpreted either as
electro-weak gauge group, group of rotations of th geodesic sphere of δM4

±, or a subgroup of
SU(3). In TGD interpretation for McKay correspondence a phase transition replacing gauge
symmetry with Kac-Moody symmetry.

3. The scalings of trace by factor 2 seem to be preferred physically which should be contrasted
with the fact that primes near prime powers of 2 and with the fact that quantum phases
q = exp(iπ/n) with n equal to Fermat integer proportional to power of 2 and product of the
Fermat primes (the known ones are 5, 17, 257, and 216 + 1) are in a special role in TGD
Universe.

4. What could one say about II1 automorphism associated with the II∞ automorphism defining
factor of type III?

An interesting question relates to the interpretation of the automorphisms of II∞ factor induc-
ing the scaling of trace.

1. If the automorphism for Jones inclusion involves the generator of cyclic automorphism sub-
group Zn of II1 factor then it would seem that for other values of λ this group cannot be
cyclic. SU(2) has discrete subgroups generated by arbitrary phase q and these are dense in
U(1) ⊂ SU(2) sub-group. If the interpretation in terms of Jones inclusion makes sense then
the identification λ =

√M : N/2k makes sense.
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2. If HFF of type II1 is realized as group algebra of infinite symmetric group [27], the outer
automorphism induced by the diagonally imbedded finite Galois groups can induce only in-
teger values of n and Zn would correspond to cyclic subgroups. This interpretation conforms
with the fact that the automorphisms in the completion of inner automorphisms of HFF of
type II1 induce trivial scalings. Therefore only automorphisms which do not belong to this
completion can define HFFs of type III.

3.4.2 What could be the physical interpretation of two kinds of invariants associated
with HFFs type III?

TGD predicts two kinds of S-matrices: S-matrix and U -matrix. Both are expected to be more or
less universal. There are also two kinds of invariants and automorphisms associated with HFFs of
type III.

1. The first invariant corresponds to the scaling λ ∈]0, 1[ of the trace associated with the auto-
morphism of factor of II∞. Also the end points of the interval make sense. The inverse of
this scaling accompanies the inverse of this automorphism.

2. Second invariant corresponds to the time scales t = T0 for which the outer automorphism
σt reduces to inner automorphism. It turns out that T0 and λ are related by the formula
λiT0 = 1, which gives the allowed values of T0 as T0 = n2π/log(λ) [47]. This formula can
be understood intuitively by realizing that λ corresponds to the eigenvalue of the density
matrix ∆ = eH in the simplest possible realization of the state φ.

The presence of two automorphisms and invariants brings in mind U matrix characterizing the
unitary process occurring in quantum jump and S-matrix characterizing time like entanglement.

1. If one accepts the vision based on quantum measurement theory then λ corresponds to the
scaling of the trace resulting when quantum Clifford algebra M/N reduces to a tensor power
of M(2, C) factor in the state function reduction. The proposed interpretation for U process
would be as the inverse of state function reduction transforming this factor back to M/N .
Thus U process and state function reduction would correspond naturally to the scaling and
its inverse. This picture might apply not only in single particle case but also for zero energy
states which can be seen as states associated the a tensor power of HFFs of type II1 associated
with partons.

2. The implication is that U process can occur only in the direction in which trace is reduced.
This would suggest that the full III1 factor is not a physical notion and that one must restrict
the group Z in the crossed product Z ×cr II∞ to the group N of non-negative integers. In
this kind of situation the trace is well defined since the traces for the terms in the crossed
product comes as powers λ−n so that the net result is finite. This would mean a reduction
to II∞ factor.

3. Since time t is a natural parameter in elementary particle physics experiment, one could argue
that σt could define naturally S-matrix. Time parameter would most naturally correspond
to a parameter of scaling affecting all M4

± coordinates rather than linear time. This conforms
also with the fundamental role of conformal transformations and scalings in TGD framework.

The identification of the full S-matrix in terms of σ does not seem to make sense generally.
It would however make sense for incoming and outgoing number theoretic braids so that σ could
define universal braiding S-matrices. Inner automorphisms would bring in the dependence on
experimental situation. The reduction of the braiding matrix to an inner automorphism for critical
values of t which could be interpreted in terms of scaling by power of p. This trivialization would
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be a counterpart for the elimination of propagator legs from S-matrix element. Vertex itself could
be interpreted as unitary isomorphism between tensor product of incoming and outgoing HFFs of
type II1 would code all what is relevant about the particle reaction.

3.4.3 Does the time parameter t represent time translation or scaling?

The connection Tn = n2π/log(λ) would give a relationship between the scaling of trace and value of
time parameter for which the outer automorphism represented by σ reduces to inner automorphism.
It must be emphasized that the time parameter t appearing in σ need not have anything to do
with time translation. The alternative interpretation is in terms of M4

± scaling (implying also time
scaling) but one cannot exclude even preferred Lorentz boosts in the direction of quantization axis
of angular momentum.

1. Could the time parameter correspond to scaling?

The central role of conformal invariance in quantum TGD suggests that t parameterizes scaling
rather than translation. In this case scalings would correspond to powers of (Kλ)n. The numerical
factor K which cannot be excluded a priori, seems to reduce to K = 1.

1. The scalings by powers of p have a simple realization in terms of the representation of HFF of
type II∞ as infinite tensor power of M(p, C) with suitably chosen densities matrices in factors
to get product of I∞ and II1 factor. These matrix algebras have the remarkable property of
defining prime tensor power factors of finite matrix algebras. Thus p-adic fractality would
reflect directly basic properties of matrix algebras as suggested already earlier. That scalings
by powers of p would correspond to automorphism reducing to inner automorphisms would
conform with p-adic fractality.

2. Also scalings by powers [
√M : N/2k]n would be physically preferred if one takes previous

arguments about Jones inclusions seriously and if also in this case scalings are involved.
For q = exp(iπ/n), n = 5 the minimal value of n allowing universal topological quantum
computation would correspond to a scaling by Golden Mean and these fractal scalings indeed
play a key role in living matter. In particular, Golden Mean makes it visible in the geometry
of DNA.

2. Could the time parameter correspond to time translation?

One can consider also the interpretation of σt as time translation. TGD predicts a hierarchy
of Planck constants parameterized by rational numbers such that integer multiples are favored.
In particular, integers defining ruler and compass polygons are predicted to be in a very special
role physically. Since the geometric time span associated with zero energy state should scale as
Planck constant one expects that preferred values of time t associated with σ are quantized as
rational multiples of some fundamental time scales, say the basic time scale defined by CP2 length
or p-adic time scales.

1. For λ = 1/p, p prime, the time scale would be Tn = nT1, T1 = T0 = 2π/log(p) which is not
what p-adic length scale hypothesis would suggest.

2. For Jones inclusions one would have Tn/T0 = n2π/log(22k/M : N ). In the limit when λ
becomes very small (the number k of reduced M(2, C) factors is large one obtains Tn =
(n/k)t1, T1 = T0π/log(2). Approximate rational multiples of the basic length scale would be
obtained as also predicted by the general quantization of Planck constant.
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3.4.4 p-Adic thermodynamics from first principles

Quantum field theory at non-zero temperature can be formulated in the functional integral formal-
ism by replacing the time parameter associated with the unitary time evolution operator U(t) with
a complexified time containing as imaginary part the inverse of the temperature: t → t+ ih̄/T . In
the framework of standard quantum field theory this is a mere computational trick but the time
parameter associated with the automorphisms σt of HFF of type III is a temperature like param-
eter from the beginning, and its complexification would naturally lead to the analog of thermal
QFT.

Thus thermal equilibrium state would be a genuine quantum state rather than fictive but use-
ful auxiliary notion. Thermal equilibrium is defined separately for each incoming parton braid
and perhaps even braid (partons can have arbitrarily large size). At elementary particle level
p-adic thermodynamics could be in question so that particle massivation would have first prin-
ciple description. p-Adic thermodynamics is under relatively mild conditions equivalent with its
real counterpart obtained by the replacement of pL0 interpreted as a p-adic number with p−L0

interpreted as a real number.

3.4.5 Could HFFs of type III be associated with the dynamics in M4
± degrees of

freedom?

HFFs of type III could be also assigned with the poorly understood dynamics in M4
± degrees of

freedom which should have a lot of to do with four-dimensional quantum field theory. Hyper-finite
factors of type III1 might emerge when one extends II1 to a local algebra by multiplying it with
hyper-octonions replaced as analog of matrix factor and considers hyper-quaternionic subalgebra.
The resulting algebra would be the analog of local gauge algebra and the elements of algebra
would be analogous to conformal fields with complex argument replaced with hyper-octonionic,
-quaternionic, or -complex one. Since quantum field theory in M4 gives rise to hyper-finite III1

factors one might guess that the hyper-quaternionic restriction indeed gives these factors.
The expansion of the local HFF II∞ element as O(m) =

∑
n mnOn, where M4 coordinate m

is interpreted as hyper-quaternion, could have interpretation as expansion in which On belongs to
N gn in the crossed product N ×cr {gn, n ∈ Z}. The analogy with conformal fields suggests that
the power gn inducing λn fold scaling of trace increases the conformal weight by n.

One can ask whether the scaling of trace by powers of λ defines an inclusion hierarchy of sub-
algebras of conformal sub-algebras as suggested by previous arguments. One such hierarchy would
be the hierarchy of sub-algebras containing only the generators Om with conformal weight m ≥ n,
n ∈ Z.

It has been suggested that the automorphism ∆ could correspond to scaling inside light-cone.
This interpretation would fit nicely with Lorentz invariance and TGD in general. The factors IIIλ

with λ generating semi-subgroups of integers (in particular powers of primes) could be of special
physical importance in TGD framework. The values of t for which automorphism reduces to inner
automorphism should be of special physical importance in TGD framework. These automorphisms
correspond to scalings identifiable in terms of powers of p-adic prime p so that p-adic fractality
would find an explanation at the fundamental level.

If the above mentioned expansion in powers of mn of M4
± coordinate makes sense then the

action of σt representing a scaling by pn would leave the elements O invariant or induce a mere
inner automorphism. Conformal weight n corresponds naturally to n-ary p-adic length scale by
uncertainty principle in p-adic mass calculations.

The basic question is the physical interpretation of the automorphism inducing the scaling of
trace by λ and its detailed action in HFF. This scaling could relate to a scaling in M4 and to
the appearance in the trace of an integral over M4 or subspace of it defining the trace. Fractal
structures suggests itself strongly here. At the level of construction of physical states one always
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selects some minimum non-positive conformal weight defining the tachyonic ground state and
physical states have non-negative conformal weights. The interpretation would be as a reduction
to HHF of type II∞ or even II1.

3.4.6 Could the continuation of braidings to homotopies involve ∆it automorphisms

The representation of braidings as special case of homotopies might lead from discrete automor-
phisms for HFFs type II1 to continuous outer automorphisms for HFFs of type III1. The question
is whether the periodic automorphism of II1 represented as a discrete sub-group of U(1) would be
continued to U(1) in the transition.

The automorphism of II∞ HFF associated with a given value of the scaling factor λ is unique.
If Jones inclusions defined by the preferred values of λ as λ =

√M : N/2k (see the previous con-
siderations), then this automorphism could involve a periodic automorphism of II1 factor defined
by the generator of cyclic subgroup Zn for M : N < 4 besides additional shift transforming II1

factor to I∞ factor and inducing the scaling.

4 The construction of S-matrix and hyper-finite factors

I am more or less accepted as a fact that I will never be able to write explicit formulas for the
S-matrix of TGD. I however feel that this is not solely due to my considerable personal limitations
but also because a radically new conceptualization must be developed before one can start to think
about calculating something. The reason is that the notion of functional integral must be given
up in TGD framework and replaced with an approach inspired by the construction of braiding
S-matrices which should be generalized to allow also reactions in which braids are created and
disappear.

4.1 Jones inclusions in relation to S-matrix and U matrix

Zero energy ontology which reduces to the positive energy ontology of the standard model only
as a limiting case [C2]. What I have called U -matrix characterizes the unitary process associated
with the quantum jump (and followed by state function reduction and state preparation).

In the simplest scenario S-matrix would define time-like entanglement between positive and
negative energy parts of the zero energy state and code the rates for particle reactions which
in TGD framework correspond to quantum measurements reducing time-like entanglement. S-
matrix is obviously not identifiable as U -matrix, which for real-real quantum transitions might be
almost trivial by arguments of [C2] and interesting only for p-adic-to-real transitions. U process
for positive energy states would induce state function reduction for negative energy states and vice
versa and U process would correspond to extension of factor and thus define Jones inclusion.

4.1.1 S-matrix

In the following both the critics of earlier picture about S-matrix is discussed in more detail than
in introduction.

1. Criticism of the original picture

For HFFs of type II1 Tr(SS†) = Tr(Id) = 1 holds true. Hence in zero energy ontology and
for HFFs of type II1 time like entanglement coefficients between positive and negative energy part
of the state could define a unitary S-matrix. For this interpretation S-matrix would code for the
transition rates measured in particle physics experiments with particle reactions interpreted as
quantum measurements reducing time like entanglement.

It is not difficult to criticize this picture.
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1. Why time like entanglement should be always characterized by a unitary S-matrix? Why not
some more general matrix? If one allows more general time like entanglement, the description
of particle reaction rates in terms of a unitary S-matrix must be replaced with something more
general and would require a profound revision of the vision about the relationship between
experiment and theory. Also the consistency of the zero energy ontology with positive energy
ontology in time scales shorter than the time scale determined by the geometric time interval
between positive and negative energy parts of the zero energy state would be lost. Hence
the easy way to proceed is to postulate that the universe is self-referential in the sense that
quantum states represent the laws of physics by coding S-matrix as entanglement coefficients.

2. One might argue that the requirement of HFF of type II1 is too strong one in bosonic degrees
of freedom. The normalizability of the states in bosonic degrees of freedom however leads to
the reduction II∞ → II1 ⊗ In = II1 to a HFF of type II1. Also the condition that Boolean
functions are representable in terms of time like entanglement is consistent with the unitarity.

3. A further objection is that there might a huge number of unitary S-matrices so that it would
not be possible to speak about quantum laws of physics anymore. This need not be the case
since super-conformal symmetries and number theoretic universality pose extremely powerful
constraints on S-matrix. Super-conformal symmetry in light-like radial degree of freedom
for light-like partonic 3-surfaces is consistent with the identification as partonic 3-surface
as space-time correlate for time evolution in turn forcing entanglement coefficients to define
a unitary S-matrix. That only single zero energy state would be assignable to a partonic
3-surface would imply that quantum states are in 1-1 correspondence with space-time sheets
required by a strict quantum classical correspondence.

Since the maxima of Kähler function correspond to different S-matrices, the dynamics does not
reduce to genuinely 2-dimensional string model dynamics. Spin glass degeneracy indeed allows huge
variety of dynamics: recall that the model of spin glass indeed involves an ensemble of Hamiltonians.
Light-like non-determinism of partonic 3-surfaces would also explain the undeniable engineering
aspect of the Universe by predicting its presence at the level of fundamental quantum dynamics.

Topological quantum computation represents certainly the highest level of engineering. The
replication of number theoretic braids in partonic vertices at which the ends of light-like partonic
3-surfaces meet makes possible to understand not only topological quantum computation but also
copying of information and its communication as parton exchange as fundamental processes.

2. Is S-matrix invariant under inclusions?

A highly attractive additional assumption is that S-matrix is universal in the sense that it
is invariant under the inclusion sequences defined by Galois groups G associated with partonic
2-surfaces. Various constraints on S-matrix might actually imply the inclusion invariance. One
might argue that zero energy states for which time-like entanglement is characterized by S-matrix
invariant in the inclusion correspond to asymptotic self-organization patterns for which U -process
and state function reduction do not affect the S-matrix in the relabelled basis. The analogy with
a fractal asymptotic self-organization pattern is obvious.

3. Jones inclusions and physical states as representations of Galois groups

In TGD inspired quantum measurement theory measurement resolution is characterized by
Jones inclusion (the group G defines the measured quantum numbers), N ⊂ M takes the role of
complex numbers, and state function reduction in fermionic degrees of freedom leads to N ray in
the space M/N regarded as N module and thus from a factor to a sub-factor [C2].

The finite number theoretic braid having Galois group G as its symmetries is the space-time
correlate for both the finite measurement resolution and the effective reduction of HFF to that
associated with a finite-dimensional quantum Clifford algebraM/N . SU(2) inclusions would allow
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angular momentum and color quantum numbers in bosonic degrees of freedom and spin and electro-
weak quantum numbers in spinorial degrees of freedom. McKay correspondence would allow to
assign to G also compact ADE type Lie group so that also Lie group type quantum numbers could
be included in the repertoire [27].

Galois group G would characterize sub-spaces of the configuration space (”world of classical
worlds”) number theoretically in a manner analogous to the rough characterization of physical
states by using topological quantum numbers. Each braid associated with a given partonic 2-
surface would correspond to a particular G that the state would be characterized by a collection
of groups G. G would act as symmetries of zero energy states and thus of S-matrix. S-matrix
would reduce to a direct integral of S-matrices associated with various collections of Galois groups
characterizing the number theoretical properties of partonic 2-surfaces.

4.1.2 U-matrix

U -matrix is global notion as opposed to S-matrix and it is not clear how it relates to S-matrix,
which reduces to a local notion in TGD framework. In a well-defined sense U process seems to
be the reversal of state function reduction. Hence the natural guess is that U -matrix means a
quantum transition in which a factor becomes a sub-factor whereas state function reduction would
lead from a factor to a sub-factor. As found, the unitarity of S-matrix suggests that U process for
positive energy part of state could induces state function reduction for negative energy part and
vice versa.

The arguments of [C2] suggest that U matrix could be almost trivial and has as a basic building
block the so called factorizing S-matrices for integrable quantum field theories in 2-dimensional
Minkowski space. For these S-matrices particle scattering would mean only a permutation of mo-
menta in momentum space. If the S-matrix is invariant under inclusion then U matrix should be
in a well-defined sense almost trivial apart from a dispersion in zero modes leading to a superpo-
sitions of states characterized by different collections of Galois groups. One must be however very
cautious since the idea about extension of factor might change the situation.

4.1.3 Relation to TGD inspired theory of consciousness

U -matrix could be almost trivial with respect to the transitions which are diagonal with respect
to the number field. What would however make U highly interesting is that it would predict the
rates for the transitions representing a transformation of intention to action identified as a p-adic-
to-real transition. In this context almost triviality would translate to a precise correlation between
intention and action.

The general vision about the dynamics of quantum jumps suggests that the extension of a
sub-factor to a factor is followed by a reduction to a sub-factor which is not necessarily the same.
Breathing would be an excellent metaphor for the process. Breathing is also a metaphor for
consciousness and life. Perhaps the essence of living systems distinguishing them from sub-systems
with a fixed state space could be cyclic breathing like process N → M ⊃ N → N1 ⊂ M →
.. extending and reducing the state space of the sub-system by entanglement followed by de-
entanglement.

One could even ask whether the unique role of breathing exercise in meditation practices
relates directly to this basic dynamics of living systems and whether the effect of these practices
is to increase the value of M : N and thus the order of Galois group G describing the algebraic
complexity of ”partonic” 2-surfaces involved (they can have arbitrarily large sizes). The basic
hypothesis of TGD inspired theory of cognition indeed is that cognitive evolution corresponds to
the growth of the dimension of the algebraic extension of p-adic numbers involved.

If one is willing to consider generalizations of the existing picture about quantum jump, one
can imagine that unitary process can occur arbitrary number of times before it is followed by state
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function reduction. Unitary process and state function reduction could compete in this kind of
situation.

4.1.4 Fractality of S-matrix and translational invariance in the lattice defined by
sub-factors

Fractality realized as the invariance of the S-matrix in Jones inclusion means that the S-matrices
of N and M relate by the projection P : M→N as SN = PSMP . SN should be equivalent with
SM with a trivial re-labelling of strands of infinite braid.

Inclusion invariance would mean translational invariance of the S-matrix with respect to the
index n labelling strands of braid defined by the projectors ei. Translations would act only as
a semigroup and S-matrix elements would depend on the difference m − n only. Transitions can
occur only for m−n ≥ 0, that is to the direction of increasing label of strand. The group G leaving
N element-wise invariant would define the analog of a unit cell in lattice like condensed matter
systems so that translational invariance would be obtained only for translations m → m + nk,
where one has n ≥ 0 and k is the number of M(2, C) factors defining the unit cell. As a matter
fact, this picture might apply also to ordinary condensed matter systems.

4.2 S-matrix as a generalization of braiding S-matrix?

Consider now whether and how this framework could help to understand the construction of S-
matrix when one adds ideas inspired by HFFs to the earlier ideas.

4.2.1 From path integral to a generalization of braiding S-matrix

The basic difference as compared to standard QFT framework is that there is no path integral
and therefore there are excellent hopes that there are no infinities. Hence one can worry about
whether coupling constant evolution is possible at all. The construction of M -matrix with finite
measurement resolution realized in terms of inclusions of von Neumann algebras allows to under-
stand coupling constant evolution in terms of analogs of radiative corrections resulting as the scale
of time resolution is increased. Also p-adic length scale hypothesis follows as a prediction [C2].

There is of course functional integral (not path integral) over the small deformations of par-
tonic 3-surface corresponding to a functional integral around the maximum of Kähler function.
This functional integral is however free of standard infinities since Kähler function is a non-local
functional of light-like 3-surface. Quantum criticality strongly suggests and p-adicization requires
that it can be carried out explicitly (meaning that TGD is integrable quantum theory). If so, then
the presence of these degrees of freedom boils down to the bosonic parts of Super Kac-Moody
algebra and super-canonical algebra and selection of light-like partonic 3-surfaces corresponding
to maxima of Kähler function as preferred ones.

In accordance with the proposal developed in detail [C6] S-matrix is a generalization of braiding
S-matrix allowing also a fusion and replication of braids. This replication is actually very much
like that of DNA and the replication of classical information associated with number theoretic
braids might be what occurs at the deeper level in DNA replication.

This implies that S-matrix separates into a tensor product of braiding S-matrices associated
with incoming and outgoing legs and to a unitary isomorphism between the tensor product of
HFFs of type II∞ associated with the incoming and with outgoing partons. Thus the result would
be automatically unitary. The result is same for both or S-matrix in ordinary sense and in the
sense of zero energy ontology.

II∞ automorphisms can be interpreted as shifts along the lattice of tensor factors assignable
to the factor. This encourages the interpretation as a reversal of state function reduction and
counterpart of U -process. U -process would be realized at local level in this manner.
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4.2.2 HFFs of type III as super-structures providing additional uniqueness?

If the braiding S-matrices are as such highly unique. One could however consider the possibility
that they are induced from the automorphisms σt for the HFFs of type III restricted to HFFs of
type II∞. If a reduction to inner automorphism in HFF of type III implies same with respect to
HFF of type II∞ and even II1, they could be trivial for special values of time scaling t assignable
to the partons and identifiable as a power of prime p characterizing the parton. This would allow
to eliminate incoming and outgoing legs. This elimination would be the counterpart of the division
of propagator legs in quantum field theories. Particle masses would however play no role in this
process now although the power of padic prime would fix the mass scale of the particle.

4.2.3 Inner automorphisms as universal gauge symmetries?

The continuous outer automorphisms ∆it of HFFs of type III are not completely unique and one
can worry about the interpretation of the inner automorphisms. A possible resolution of the worries
is that inner automorphisms act as universal gauge symmetries containing various super-conformal
symmetries as a special case. For hyper-finite factors of type II1 in the representation as an infinite
tensor power of M2(C) this would mean that the transformations non-trivial in a finite number
of tensor factors only act as analogs of local gauge symmetries. In the representation as a group
algebra of S∞ all unitary transformations acting on a finite number of braid strands act as gauge
transformations whereas the infinite powers P×P×..., P ∈ Sn, would act as counterparts of global
gauge transformations. In particular, the Galois group of the closure of rationals would act as local
gauge transformations but diagonally represented finite Galois groups would act like global gauge
transformations and periodicity would make possible to have finite braids as space-time correlates
without a loss of information.

4.2.4 Unitary isomorphisms between tensor powers of II1 define vertices

What would be left would be the construction of unitary isomorphisms between the tensor products
of the HFFs of type II1 ⊗ In = II1 at the partonic 2-surfaces defining the vertices. This would be
the only new element added to the construction of braiding S-matrices.

As a matter fact, this element is actually not completely new since it generalizes the fusion
rules of conformal field theories, about which standard example is the fusion rule φi = c jk

i φjφk

for primary fields. These fusion rules would tell how a state of incoming HFF decomposes to the
states of tensor product of two outgoing HFFs.

These rules indeed have interpretation in terms of Connes tensor products M⊗N ... ⊗N M
for which the sub-factor N takes the role of complex numbers [60] so that one has M becomes
N bimodule and ”quantum quantum states” have N as coefficients instead of complex numbers.
In TGD framework this has interpretation as quantum measurement resolution characterized by
N (the group G characterizing leaving the elements of N invariant defines the measured quantum
numbers).

4.2.5 The relationship of TGD to the perturbative QFT

There is infinity of generalized braid diagrams involving exchanges of partons containing braids.
The difference with respect to the ordinary Feynman diagrams is that the generalized braid dia-
grams correspond to the maxima of Kähler function labelled by discrete labels rather than contin-
uously varying positions of interaction vertices. This is true for fixed moduli defined as continuous
parameters labelling sectors of the configuration space (”world of classical worlds”) and thus Kähler
functions.

The reduction to a maximum of Kähler function for a given value of moduli excludes radia-
tive corrections and leaves only the diagrams with the simplest topology allowing the reaction
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to proceed. For ordinary Feynman diagrams this restriction would mean taking just the minimal
Feynman diagram and forgetting all more complex diagrams. This makes sense only if all radiative
corrections to the minimal diagram (, which can contain a loop as in photon-photon scattering)
vanish. Quantum criticality of TGD Universe would suggest that only the minimal braid diagram
is realized as a maximum of Kähler function. The dependence of the scattering amplitudes on
p-adic primes labelling particles would give rise to the coupling constant evolution.

1. Several moduli are present

There are several kinds of moduli spaces involved. The maximum of Kähler function depends on
positions of tips of light-cones defining the arguments of n-point function since partonic 2-surfaces
end up on the boundaries of these light-cones. This means that one cannot avoid a superposition
over generalized braid diagrams. Also the presence of conformal moduli for partonic 2-surfaces
implies this kind of integral (possibly reducing to a discrete sum in p-adic variant of moduli space).

The generalization of imbedding space inspired by the quantization of Planck constant in terms
of Jones inclusions predicts that a preferred point of CP2 defining a selection of U(2) subgroup
of SU(3) defines a moduli space CP2 analogous to the tip of the light-cone. The closely related
moduli fixing quantization axes of Poincare and color quantum numbers should be also present
meaning direction of quantization axis of angular momentum and time axis fixing rest system as
well as preferred directions isospin and color hyper charge. The choice of tip of the light-cone fixes
SO(3, 1) as a particular subgroup of Poincare group. Besides this SO(3) subgroup (a particular
decomposition δM4

+ = S2×R+ defining rest system) and SO(2) ⊂ SO(3) subgroup (a light like ray
in δM4

+ defining the direction of angular momentum quantization axis) must be fixed. The choice
of U(2) fixes color hypercharge and color isopin is fixed by the choice U(1) ⊂ SU(2) ⊂ SU(3).
These choices characterize sectors of the configuration space.

The presence of continuous moduli implies that single generalized braid diagram is not enough
to describe particle reaction. What is fortunate, is that the unitarity of the fundamental S-matrices
assignable to the maxima of Kähler function does not exclude unitary for the direct integral of
S-matrices associated with a union of maxima provided that one convolutes the S-matrices with
an orthonormal set of wave functions.

2. Relationship to ordinary Feynman diagrams

The following argument suggests that this general picture allows to understand heuristically
how braid picture relates to QFT without being equivalent with the standard Feynman diagram
type description of scattering.

1. The theory should should produce the counterpart for S-matrix based on multiple Fourier
transform of n-point function in M4. In TGD framework positive/negative energy states
correspond to the tips of light-cones M4

± and Feynman diagram correspond classically a
connected 4-surface having partons as incoming and outgoing legs. Zero energy states have
wave functions with respect to these points and thus wave function in M = (M4)n+×(M4)n−

with factors corresponding to positive and negative energy particles. One can also consider a
discretization of M4 factors to lattice like structure and p-adicization suggests that this kind
of discretization must be allowed. It allows simpler conceptualization but is not essential for
the argument to be represented.

2. Assume that the generalized braid diagrams associated with various points of M correspond
to braid diagrams assignable to the maxima of Kähler function. These diagrams have the
property that their lines start from/end up to the boundary of δM4

± associated with a partic-
ular point of n-point function. The condition that the partons end to the light-like boundaries
of M4

± forces the interpretation of M as a continuous moduli space for the maxima of Kähler
function.
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3. The conclusion is that S-matrix can be regarded as a direct integral of unitary S-matrices
having point of M as parameter. This allows to convolute the generalized braiding S-matrix
S(m) with a product of wave functions fp(m) corresponding to plane waves assignable to
particles. Even more, one can allow also other orthonormal wave functions with respect to
other, possibly continuous parameters.

This picture should reproduce something resembling Feynman diagrams of QFT approach also
quantitatively.

1. Vertices should reduce to unitary isomorphisms of powers of HFFs of type II1 associated with
vertices. Also propagators should emerge from this picture from the unitary braiding matrices
associated with the internal lines. Assume that the unitary braiding matrices identifiable as
∆it, where t ≥ 0 is the maximum value of the time parameter tmax = t(|m12|) for the internal
line with M4 length |m12|, and ∆ is determined by the inherent automorphism characterizing
HFF of type III. A weaker condition is that the braiding S-matrix is expressible as exponent
of more general Hamiltonian H. Of course, the mere assumption that braiding S-matrix is
in question poses strong conditions on H.

2. The naive expectation is that the integral over the values of t forced by the integral over
points of M implies effectively integral over t = f(|m|) and gives propagator essentially
as 1/(∆ + iε). Mass squared would correspond to ∆. This would be consistent with the
identification of ∆ as a scaling of trace in II∞ factor by a power pn and with p-adic mass
scale hypothesis.

3. This picture assumes that besides the arguments of n-point function also the M4 distance
associated with internal lines varies continuously. Assume that there is just one maximum of
Kähler function for a given given point of M . The positions of vertices cannot vary completely
freely as they do in quantum field theory. This is crucial for the absence of divergences but
means that the idea about propagators as Fourier transforms of ∆it with t = t(|m12|) might
fail.

It however seems safe to assume that for a given value of m and for each internal line of
the generalized braid diagram having vertices at m1(m) and m2(m) in M4 the value of t is
in the first approximation a linear function of M4 distance |m12|. If this distance various
continuously as function of m then the integral over M can give rise to propagators. For
2-particle scattering this is easy to believe. For n1 → n2 scattering the values of ti(m12)
are correlated unless the M4 distance between the scattering events is large enough. This
condition means that the field theory description fails for too short distances which is very
reasonable.

4. Also massless particles are characterized by a p-adic prime p. It seems that they must
correspond to ∆ = p−n, n → ∞, and thus to the limit when the quantum measurement
becomes ideal and corresponds to a Jones inclusion with a reduction of trace by an infinite
power of p. Thus the quantum measurement resolution could be seen as a characterizer of
the particle mass scale. This should also relate to p-adic thermodynamics with temperature
T = 1/n implying that real thermal mass squared is of order p−n. Exactly massless particles
would emerge only at the limit vanishing p-adic temperature but in the physical situation the
natural infrared cutoff due to the dynamics would imply finite mass even in case of photons.

3. What perturbative QFT limit means in TGD framework?

The allowance of continuous families of maxima of Kähler function implies that in S-matrix
elements the value of Kähler function at maximum is not eliminated completely anymore. The
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maximum of K has a maximum for some value m0 of m. One can expand K in power series around
m0 and a Gaussian integral results in the lowest order approximation and gives as an outcome a
factor which is Gaussian of form exp(Kijp

i) · pj)) in the four-momenta pi) of the particles. This
factor has obviously nothing to do with propagator factors. The dependence is qualitatively similar
to the dependence of stringy scattering amplitudes on momenta explaining the strong transversal
cutoff in hadronic reactions having interpretation in terms of color confinement. Kij should be
small for perturbative phase so that Kähler function K(m) must be effectively constant when
perturbative QFT type description applies.

4. Quantum classical correspondence at the level of perturbative S-matrix

A longstanding question has been whether quantum-classical correspondence is ideal in these
sense that 4-D classical dynamics would be a mere passive correlate of the parton dynamics dic-
tated by light-like randomness or whether it might have some active role. It would seem that
in perturbative phase quantum classical correspondence holds in strong sense but not when non-
perturbative effects are important. If quantum classical correspondence is ideal, the quantum
dynamics of partonic 3-surface should be all that is needed to understand scattering matrix. This
option is very elegant computationally.

1. There would be no need to solve complex classical field equations since the only condition
on dynamics would be light-likeness. The light-like 3-surfaces corresponding to the maxima
of Kähler function could correspond to (possibly preferred) extrema of Chern-Simons action
having at most 2-dimensional CP2 projection.

2. As already found, one cannot restrict the consideration to a single maximum of Kähler func-
tion. Kähler function however effectively disappears in the case of perturbative QFT defined
as the limit when Kähler function does not depend on positions of the tips of the light-cones
associated with n-point function. For instance, a braid diagram involving an exchange of a
parton could describe the scattering by the exchange of massless gauge bosons without any
information about space-time surface itself since the knowledge about the distance between
scattering partons appearing in Coulomb potential would be coded by the presence of the
exchanged parton.

5. Quantum classical correspondence at the level of bound states

The methods of perturbative QFT do not provide a satisfactory description for the formation of
bound states. Even the understanding of hydrogen atom in QED framework is far from satisfactory,
and the failure of perturbative QED can be guessed from the 1/h̄2 type dependence of bound state
energy scale on Planck constant. The TGD inspired interpretation has been that bound states
cannot be described satisfactorily in terms of boson exchanges since the very process means that two
space-like 3-surfaces fuse to form a single space-like 3-surface so that degrees of freedom disappear
and this loss of degrees of freedom is not taken into account in perturbative QFT description based
on relativistic propagators.

This picture about bound states conforms with the above formulated picture in which non-
perturbative effects emerge, when Kähler function cannot be regarded as a constant as a function
of positions of interacting particles so that 4-D space-time sheet does not reduce to a mere pas-
sive correlate for the purely partonic dynamics. More explicitly, Kähler function as a minimum
of Kähler action contains terms identifiable as interaction energies between partons and if this
dependence is strong enough, perturbative approximation fails and bound states result. Besides
hydrogen atom also hadron collisions seen in sufficiently long time and length scales provide an
example about this situation.

The conclusion is that for bound states the quantum classical correspondence cannot make sense
in the strongest sense of the word. This is expected to hold true even for gravitation and TGD
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indeed makes the quite dramatic prediction that dark matter correspond to phases macroscopic
in astrophysical length scales and that the presence of dark matter can induce Bohr orbit type
quantization of planetary orbits [C7, D6].

4.2.6 Planar algebras and generalized Feynman diagrams

Planar algebras [71] are a very general notion due to Vaughan Jones and a special class of them is
known to characterize inclusion sequences of hyper-finite factors of type II1 [72]. In the following an
argument is developed that planar algebras might have interpretation in terms of planar projections
of generalized Feynman diagrams (these structures are metrically 2-D by presence of one light-like
direction so that 2-D representation is especially natural).

1. Planar algebra very briefly

First a brief definition of planar algebra.

1. One starts from planar k-tangles obtained by putting disks inside a big disk. Inner disks
are empty. Big disk contains 2k braid strands starting from its boundary and returning
back or ending to the boundaries of small empty disks in the interior containing also even
number of incoming lines. It is possible to have also loops. Disk boundaries and braid strands
connecting them are different objects. A black-white coloring of the disjoint regions of k-
tangle is assumed and there are two possible options (photo and its negative). Equivalence
of planar tangles under diffeomorphisms is assumed.

2. One can define a product of k-tangles by identifying k-tangle along its outer boundary with
some inner disk of another k-tangle. Obviously the product is not unique when the number
of inner disks is larger than one. In the product one deletes the inner disk boundary but if
one interprets this disk as a vertex-parton, it would be better to keep the boundary.

3. One assigns to the planar k-tangle a vector space Vk and a linear map from the tensor
product of spaces Vki associated with the inner disks such that this map is consistent with
the decomposition k-tangles. Under certain additional conditions the resulting algebra gives
rise to an algebra characterizing multi-step inclusion of HFFs of type II1.

4. It is possible to bring in additional structure and in TGD framework it seems necessary to
assign to each line of tangle an arrow telling whether it corresponds to a strand of a braid
associated with positive or negative energy parton. One can also wonder whether disks could
be replaced with closed 2-D surfaces characterized by genus if braids are defined on partonic
surfaces of genus g. In this case there is no topological distinction between big disk and
small disks. One can also ask why not allow the strands to get linked (as suggested by the
interpretation as planar projections of generalized Feynman diagrams) in which case one
would not have a planar tangle anymore.

2. General arguments favoring the assignment of a planar algebra to a generalized Feynman
diagram

There are some general arguments in favor of the assignment of planar algebra to generalized
Feynman diagrams.

1. Planar diagrams describe sequences of inclusions of HFF:s and assign to them a multi-
parameter algebra corresponding indices of inclusions. They describe also Connes tensor
powers in the simplest situation corresponding to Jones inclusion sequence. Suppose that
also general Connes tensor product has a description in terms of planar diagrams. This might
be trivial.
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2. Generalized vertices identified geometrically as partonic 2-surfaces indeed contain Connes
tensor products. The smallest sub-factor N would play the role of complex numbers meaning
that due to a finite measurement resolution one can speak only about N-rays of state space
and the situation becomes effectively finite-dimensional but non-commutative.

3. The product of planar diagrams could be seen as a projection of 3-D Feynman diagram to
plane or to one of the partonic vertices. It would contain a set of 2-D partonic 2-surfaces.
Some of them would correspond vertices and the rest to partonic 2-surfaces at future and
past directed light-cones corresponding to the incoming and outgoing particles.

4. The question is how to distinguish between vertex-partons and incoming and outgoing par-
tons. If one does not delete the disk boundary of inner disk in the product, the fact that lines
arrive at it from both sides could distinguish it as a vertex-parton whereas outgoing partons
would correspond to empty disks. The direction of the arrows associated with the lines of
planar diagram would allow to distinguish between positive and negative energy partons
(note however line returning back).

5. One could worry about preferred role of the big disk identifiable as incoming or outgoing
parton but this role is only apparent since by compactifying to say S2 the big disk exterior
becomes an interior of a small disk.

3. A more detailed view

The basic fact about planar algebras is that in the product of planar diagrams one glues two
disks with identical boundary data together. One should understand the counterpart of this in
more detail.

1. The boundaries of disks would correspond to 1-D closed space-like stringy curves at partonic
2-surfaces along which fermionic anti-commutators vanish.

2. The lines connecting the boundaries of disks to each other would correspond to the strands
of number theoretic braids and thus to braidy time evolutions. The intersection points of
lines with disk boundaries would correspond to the intersection points of strands of number
theoretic braids meeting at the generalized vertex.
[Number theoretic braid belongs to an algebraic intersection of a real parton 3-surface and its
p-adic counterpart obeying same algebraic equations: of course, in time direction algebraicity
allows only a sequence of snapshots about braid evolution].

3. Planar diagrams contain lines, which begin and return to the same disk boundary. Also
”vacuum bubbles” are possible. Braid strands would disappear or appear in pairwise manner
since they correspond to zeros of a polynomial and can transform from complex to real and
vice versa under rather stringent algebraic conditions.

4. Planar diagrams contain also lines connecting any pair of disk boundaries. Stringy decay of
partonic 2-surfaces with some strands of braid taken by the first and some strands by the
second parton might bring in the lines connecting boundaries of any given pair of disks (if
really possible!).

5. There is also something to worry about. The number of lines associated with disks is even
in the case of k-tangles. In TGD framework incoming and outgoing tangles could have odd
number of strands whereas partonic vertices would contain even number of k-tangles from
fermion number conservation. One can wonder whether the replacement of boson lines with
fermion lines could imply naturally the notion of half-k-tangle or whether one could assign
half-k-tangles to the spinors of the configuration space (”world of classical worlds”) whereas
corresponding Clifford algebra defining HFF of type II1 would correspond to k-tangles.
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4.2.7 More concrete picture about vertices

The understanding about the construction of S-matrix has increased considerably and it is now
possible to attack seriously the challenge of writing down the generalized Feynman rules.

1. Generalized Feynman diagrams

Let us first summarize the general picture.

1. Feynman diagrams are replaced with their higher dimensional variants with lines replaced
with light-like 3-surfaces identifiable as partonic orbits and with vertices replaced with par-
tonic 2-surfaces along which lines meet. Light-like 3-surfaces corresponding of maxima of
Kähler function define generalized Feynman diagrams. There is no summation over the di-
agrams and each reaction corresponds to single minimal diagram. Quantum dynamics is
2-dimensional in the sense that vertices are defined by partonic 2-surfaces and 3-dimensional
in the sense that different maxima of Kähler function defining points of spin glass energy
landscape give rise to additional degeneracy essentially due to the presence of light-like di-
rection.

2. In zero energy ontology M-matrix decomposes to a product of square root of density matrix
and unitary unitary S-matrix depending parametrically on points of M4 defining arguments
of N-point function in QFT approach. The momentum representation of S-matrix is obtained
by taking a Fourier transform of this and is also unitary.

3. S-matrix is a generalization of braiding S-matrix in the sense that one assigns to the in-
coming/outgoing and internal lines a unitary braiding matrix. To the vertices, where braids
replicate, one assigns a unitary isomorphism between tensor product of hyper-finite II1 factors
(HFFs) associated with incoming resp. outgoing lines. A crucial element in the construction
is that these tensor products are themselves HFFs of type II1.

4. Since also bosons are fermion-antifermion states located at partonic 2-surfaces, the construc-
tion of vertices reduces basically to that in the fermionic Fock space associated with the
vertex and the space of small deformations of the generalized Feynman diagram around the
maximum of Kähler function. The discrete set of points defining number theoretic strand
define the basic unitary S-matrix and these points carry various quantum numbers. The
natural assumption is that one can use at the vertex same fermionic basis for all incoming
and outgoing lines and that unitary braiding S-matrix associated with lines induces a unitary
transformation of basis. Its presence in internal lines gives rise to propagators as one inte-
grates over the positions for tips of future and past light-cones containing at their light-like
boundaries incoming and outgoing partons.

One can proceed by making simple guesses about the unitary isomorphism associated with the
vertex.

1. The simplest guess would be that vertices involve only simple Fock space inner product.
This would be like old fashioned quark model in which the quarks of incoming hadrons are
re-arranged to from outgoing hadrons without pair creation or gluon emission. This trial
does not work since it would not allow bosons which can be regarded as fermion-antifermion
pair with either of them having non-physical helicity. This observation however serves as a
valuable guideline.

2. An alternative guess is based on the observation that partonic 2-surface with punctures
defined by number theoretical braids is analogous to closed bosonic string emitting particles.
This would suggest that unitary S-matrix could be assigned with some conformal field theory
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or possibly string model. At least for non-specialist in conformal field theories this approach
looks too abstract.

2. Vertices from free field theory defined by the modified Dirac operator

Something more concrete is required and to proceed one can try to apply the mathematical
constraints from the basic definition of TGD.

1. The vertices should come out naturally from the modified Dirac action which contains the
classical coupling of the gauge potentials (induced spinor connection) to fermions. Hence the
modified Dirac action defining the analog of free field theory should appear as a basic building
block in the definition of the inner product. Perturbation theory with respect to the induced
gauge potential would conform with standard QFT but does not make sense. There is simply
no decomposition of the modified Dirac operator D to ”free” part and interaction term and
the notions of on mass shell and off mass shell state must be reconsidered accordingly.

2. The vacuum expectation for the exponent of the modified Dirac action gives vacuum func-
tional identified as the exponent of Kähler function. When one sandwiches the exponent of
Dirac action between many-fermion states, one obtains an inner product analogous to that
in free field theory Feynman rules. How however the states are not annihilated by D but
are its generalized eigenstates with eigenvalues λ depending on p-adic prime by an overall
scaling factor log(p) responsible for the coupling constant evolution. The generalized eigen-
value equation reads as DΨ = λtkΓkΨ, where tk is the light-like vector defining the tangent
vector of partonic 3-surface or its M4 dual fixed once rest system and quantization axis of
angular momentum has been fixed (it is not yet quite clear which option is correct). The
notion of generalized eigenmode allows also to define Dirac determinant without giving up
the separate conservation of H-chiralities (B and L). The generalized eigenstates are analogs
of solutions of massless wave equation in the sense that the square of D annihilates them.
Between states created by a monomial of fermionic oscillator operators the inner product
reduces to a product of propagators.

3. A strict correspondence with free field theory would require that the incoming and outgoing
states correspond to zero modes with λ = 0 whereas internal lines as off mass shell states
would correspond to non-vanishing eigenvalues λ. This assumption is however un-necessary
since the four-momentum dependence comes only through the Fourier transform and one can
regard all generalized eigenmodes as counterparts of massless modes. The restriction might
be also inconsistent with unitarity.

4. For generalized eigenstates of D the modified Dirac propagator 1/D reduces to okΓk/λ. ok

is the light-like M4 dual of the light-like vector tk associated with the generalized eigenvalue
equation. λ is the generalized eigenvalue of D proportional to log(p). The propagator can
be non-vanishing between vacuum and a boson consisting of fermion with physical helicity
and anti-fermion with non-physical helicity so that non-trivial boson emission vertices are
possible. At first it would seem that the inverse of the generalized eigenvalue λ contributes to
the p-adic coupling constant evolution an overall 1/log(p) proportionality factor. However,
since the inner product of un-normalized ”bare” boson states (just fermion pair) is propor-
tional to 1/log(p), the normalization of bosonic states cancels this factor so that algebraic
number results. Thus fermionic contributions to the vertices are extremely simple since only
the matrix okΓk remains. The conclusion made already earlier is that the p-adic coupling
constant evolution must be due to the time evolution along parton lines dictated by the
modified Dirac operator.
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5. The fermionic contribution to the vertex says nothings about gauge couplings. All gauge
coupling strengths must be proportional to the RG invariant Kähler coupling strength αK ,
which can emerge only from the functional integral over small fluctuations around maximum
of Kähler function K when the operator inverse of the covariant configuration space Kähler
metric defining propagator is contracted between bosonic vector fields generating Kac-Moody
and super-canonical symmetries in terms of which the deformation of the partonic 3-surface
can be expressed. Obviously the configuration space spinor fields representing bosonic states
must vanish at the maximum of K: otherwise coupling strength is of order unity. Geomet-
rically this means that the maxima of K correspond to fixed points of these isometries.

3. Number theoretical constraints

The condition that S-matrix elements are algebraic numbers is an additional powerful guideline.

1. The most straightforward manner to guarantee that S-matrix elements are algebraic numbers
is that vertex factors and propagators are separately algebraic numbers. log(p) -factors
are obviously problematic number theoretically but normalization of the Fock space inner
products cancels these factors. Thus coupling constant evolution can come only from the
unitary time evolution with respect to the light-like coordinate of propagator lines dictated
by the modified Dirac operator. Fermionic oscillator operators suffer a non-trivial unitary
transformation depending on the p-adic prime p since (expressing it schematically) eiHt is
replaced by piHt.

2. The fundamental number theoretic conjecture is that the numbers psn , where sn = 1/2+ iyn

correspond to non-trivial zeros of Riemann zeta (or of more general zetas possibly involved:
as a matter fact zetas can assigned with the values of the generalized eigenvalues of the
modified Dirac operator at points of defining number theoretic braid [C1]), are algebraic
numbers. If this is the case, then also the products and sums involving finite number of
nontrivial zeros of zeta are algebraic numbers and define a commutative algebra. The effect
of the unitary time evolution operator should be expressible as an element of this algebra.
Also larger algebraic extensions can be considered.

3. A simplified picture is provided by the dynamics of free number theoretic Hamiltonian for
which eigenstates are labelled by primes and energy eigenvalues are given by Ep = log(p).
Time evolution gives rise to phase factors exp(iEpt) = pit which are algebraic numbers
in given extension of rationals for some quantized values of light-like coordinate t. If the
conjectures about zeros of zeta hold true this is achieved if t is a linear combination of
imaginary parts of zeros of zeta with integer coefficients: t =

∑
n k(n)yn.

4.2.8 Comparison with the earlier views about S-matrix

It must be made clear that the proposed view about S-matrix is not completely identical with the
earlier proposals for how to construct S-matrix.

1. In the recent proposal one starts from a minimal generalized braid diagram (not stringy dia-
gram!) formed from partonic 2-surfaces containing exchanges and annihilations. The minimal
diagrams correspond to maxima of Kähler function in spin energy landscape and are labelled
by discrete labels and continous moduli such as arguments of n-point function and conformal
moduli of partonic 2-surfaces. Quantum classical correspondence in strongest possible sense
requires that one can assume a complete localization around single maximum and this is not
possible in moduli space which implies non-perturbative effects such as formation of bound
states.
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2. In [C6] the idea that there is an infinite number of generalized braid diagrams which are
equivalent, was developed. In particular, generalized braid diagrams with loops are equivalent
to diagrams without loops. This view does not conform with spin energy landscape picture
as such but is replaced with an equivalent picture in which Kähler function allows only the
maximum corresponding to the minimal diagram making possible the reaction. What is nice
in the new view is that it has concrete interpretation in terms of classical dynamics.

3. The zero energy ontology based view [C2] is that that S-matrix can be constructed by intro-
ducing single central 3-surface containing partons at which incoming and outgoing partons
meet but do so only along their partonic 2-surfaces. The reason was that the assignment
of single space-time surface to the entire transition would not conform with the classical
conservation laws. One can criticize this view for not being completely consistent with
quantum-classical correspondence. One can also ask why not allow arbitrary number of
central 3-surfaces.

4.3 Finite measurement resolution: from S-matrix to M-matrix

The finite resolution of quantum measurement leads in TGD framework naturally to the notion of
quantum S-matrix for which elements have values in sub-factor of HFF rather than being complex
numbers. It is still possible to satisfy generalized unitarity condition but one can also consider the
possibility that only probabilities are conserved.

4.3.1 Jones inclusion as characterizer of finite measurement resolution at the level
of S-matrix

Jones inclusion N ⊂M characterizes naturally finite measurement resolution. This means follow-
ing things.

1. Complex rays of state space resulting usually in an ideal state function reduction are re-
placed by N -rays since N defines the measurement resolution and takes the role of complex
numbers in ordinary quantum theory so that non-commutative quantum theory results. Non-
commutativity corresponds to a finite measurement resolution rather than something exotic
occurring in Planck length scales. The quantum Clifford algebraM/N creates physical states
modulo resolution. The fact that N takes the role of gauge algebra suggests that it might
be necessary to fix a gauge by assigning to each element of M/N a unique element of M.
Quantum Clifford algebra with fractal dimension β = M : N creates physical states having
interpretation as quantum spinors of fractal dimension d =

√
β. Hence direct connection

with quantum groups emerges.

2. The notions of unitarity, hermiticity, and eigenvalue generalized. The elements of unitary and
hermitian matrices and N -valued. Eigenvalues are Hermitian elements of N and thus corre-
spond entire spectra of Hermitian operators. The mutual non-commutativity of eigenvalues
guarantees that it is possible to speak about state function reduction for quantum spinors.
In the simplest case of a 2-component quantum spinor this means that second component of
quantum spinor vanishes in the sense that second component of spinor annihilates physical
state and second acts as element of N on it. The non-commutativity of spinor components
implies correlations between then and thus fractal dimension is smaller than 2.

3. The intuition about ordinary tensor products suggests that one can decompose Tr in M as

TrM(X) = TrM/N (TrN (X)) . (4)
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Suppose one has fixed gauge by selecting basis |rk〉 for M/N . In this case one expects that
operator in M defines an operator in M/N by a projection to the preferred elements of M.

〈r1|X|r2〉 = 〈r1|TrN (X)|r2〉 . (5)

4. Scattering probabilities in the resolution defined by N are obtained in the following manner.
The scattering probability between states |r1〉 and |r2〉 is obtained by summing over the final
states obtained by the action of N from |r2〉 and taking the analog of spin average over the
states created in the similar from |r1〉. N average requires a division by Tr(PN ) = 1/M : N
defining fractal dimension of N . This gives

p(r1 → r2) = M : N × 〈r1|TrN (SPNS†)|r2〉 . (6)

This formula is consistent with probability conservation since one has

∑
r2

p(r1 → r2) = M : N × TrN (SS†) = M : N × Tr(PN ) = 1 . (7)

5. Unitary at the level of M/N is obtained if the unit operator Id for M can be decomposed
into an analog of tensor product for the unit operators of M/N and N .

4.3.2 Quantum M-matrix

The description of finite measurement resolution in terms of Jones inclusion N ⊂M seems to boil
down to a simple rule. Replace ordinary quantum mechanics in complex number field C with that
in N . This means that the notions of unitarity, hermiticity, Hilbert space ray, etc.. are replaced
with their N counterparts.

The full M-matrix in M should be reducible to a finite-dimensional quantum S-matrix in
the state space generated by quantum Clifford algebra M/N which can be regarded as a finite-
dimensional matrix algebra with non-commuting N -valued matrix elements. This suggests that
full M-matrix can be expressed as M-matrix. In the case of quantum S-matrix tge N -valued
elements would satisfy N -unitarity conditions.

Physical intuition also suggests that the transition probabilities defined by quantum S-matrix
must be commuting hermitianN -valued operators inside every row and column. The traces of these
operators give N -averaged transition probabilities. The eigenvalue spectrum of these Hermitian
gives more detailed information about details below experimental resolution. N -hermicity and
commutativity pose powerful additional restrictions on the S-matrix.

Quantum M-matrix defines N -valued entanglement coefficients between quantum states with
N -valued coefficients. How this affects the situation? The non-commutativity of quantum spinors
has a natural interpretation in terms of fuzzy state function reduction meaning that quantum
spinor corresponds effectively to a statistical ensemble which cannot correspond to pure state.
Does this mean that predictions for transition probabilities must be averaged over the ensemble
defined by ”quantum quantum states”?
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4.3.3 Does Connes tensor product fix the allowed M-matrices?

Hyperfinite factors of type II1 and the inclusion N ⊂M inclusions have been proposed to define
quantum measurement theory with a finite measurement resolution characterized by N and with
complex rays of state space replaced with N rays. What this really means is far from clear.

1. Naively one expects that matrices whose elements are elements of N give a representation
for M. Now however unit operator has unit trace and one cannot visualize the situation in
terms of matrices in case of M and N .

2. The state space with N resolution would be formally M/N consisting of N rays. For M/N
one has finite-D matrices with non-commuting elements of N . In this case quantum matrix
elements should be multiplets of selected elements of N , not all possible elements of N .
One cannot therefore think in terms of the tensor product of N with M/N regarded as a
finite-D matrix algebra.

3. What does this mean? Obviously one must pose a condition implying that N action com-
mutes with matrix action just like C: this poses conditions on the matrices that one can
allow. Connes tensor product [43] does just this.

The starting point is the Jones inclusion sequence

N ⊂M ⊂M⊗N M...

Here M⊗N M is Connes tensor product which can be seen as elements of the ordinary tensor
product commuting with N action so that N indeed acts like complex numbers in M. M/N is in
this picture represented with M in which operators defined by Connes tensor products of elements
of M. The replacement M → M/N corresponds to the replacement of the tensor product of
elements of M defining matrices with Connes tensor product.

One can try to generalize this picture to zero energy ontology.

1. M⊗N M would be generalized by M+ ⊗N M−. Here M+ would create positive energy
states and M− negative energy states and N would create zero energy states in some shorter
time scale resolution: this would be the precise meaning of finite measurement resolution.

2. Connes entanglement with respect to N would define a non-trivial and unique recipe for
constructing M-matrices as a generalization of S-matrices expressible as products of square
root of density matrix and unitary S-matrix but it is not how clear how many M-matrices this
allows. In any case M-matrices would depend on the triplet (N ,M+,M−) and this would
correspond to p-adic length scale evolution giving replacing coupling constant evolution in
TGD framework. Thermodynamics would enter the fundamental quantum theory via the
square root of density matrix.

3. The defining condition for the variant of the Connes tensor product proposed here has the
following equivalent forms

MN = N∗M , N = M−1N∗M , N∗ = MNM−1 . (8)

If M1 and M2 are two M-matrices satisfying the conditions then the matrix M12 = M1M
−1
2

satisfies the following equivalent conditions

N = M12NM−1
12 , [N, M12] = 0 . (9)

50



Jones inclusions with M : N ≤ 4 are irreducible which means that the operators commuting
with N consist of complex multiples of identity. Hence one must have M12 = 1 so that
M-matrix is unique in this case. For M : N > 4 the complex dimension of commutator
algebra of N is 2 so that M-matrix depends should depend on single complex parameter.
The dimension of the commutator algebra associated with the inclusion gives the number of
parameters appearing in the M-matrix in the general case.

When the commutator has complex dimension d > 1 , the representation of N in M is
reducible: the matrix analogy is the representation of elements of N as direct sums of d
representation matrices. M-matrix is a direct sum of form M = a1M1 ⊕ a2M2 ⊕ ..., where
Mi are unique. The condition

∑
i; |ai|2 = 1 is satisfied and *-commutativity holds in each

summand separately.

There are several questions. Could Mi define unique universal unitary S-matrices in their
own blocks? Could the direct sum define a counterpart of a statistical ensemble? Could
irreducible inclusions correspond to pure states and reducible inclusions to mixed states?
Could different values of energy in thermodynamics and of the scaling generator L0 in p-adic
thermodynamics define direct summands of the inclusion? The values of conserved quantum
numbers for the positive energy part of the state indeed naturally define this kind of direct
direct summands.

It must be of course noticed that reducibility and thermodynamics emerge naturally also
in another sense since a direct sum of HFFs of type II1 is what one expects. The radial
conformal weights associated light-cone boundary and X3

l would indeed naturally label the
factors in the direct sum.

4. Zero energy ontology is a key element of this picture and the most compelling argument for
zero energy ontology is the possibility of describing coherent states of Cooper pairs without
giving up fermion number, charge, etc. conservation and automatic emerges of length scale
dependent notion of quantum numbers (quantum numbers identified as those associated with
positive energy factor).

To sum up, interactions would be an outcome of a finite measurement resolution and at the
never-achievable limit of infinite measurement resolution the theory would be free: this would be
the counterpart of asymptotic freedom.

4.4 How p-adic coupling constant evolution and p-adic length scale hy-
pothesis emerge from quantum TGD proper?

What p-adic coupling constant evolution really means has remained for a long time more or less
open. The progress made in the understanding of the S-matrix of theory has however changed the
situation dramatically.

4.4.1 M-matrix and coupling constant evolution

The final breakthrough in the understanding of p-adic coupling constant evolution came through
the understanding of S-matrix, or actually M-matrix defining entanglement coefficients between
positive and negative energy parts of zero energy states in zero energy ontology [C2]. M-matrix
has interpretation as a ”complex square root” of density matrix and thus provides a unification of
thermodynamics and quantum theory. S-matrix is analogous to the phase of Schrödinger amplitude
multiplying positive and real square root of density matrix analogous to modulus of Schrödinger
amplitude.
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The notion of finite measurement resolution realized in terms of inclusions of von Neumann
algebras allows to demonstrate that the irreducible components of M-matrix are unique and pos-
sesses huge symmetries in the sense that the hermitian elements of included factor N ⊂M defining
the measurement resolution act as symmetries of M-matrix, which suggests a connection with in-
tegrable quantum field theories.

It is also possible to understand coupling constant evolution as a discretized evolution as-
sociated with time scales Tn, which come as octaves of a fundamental time scale: Tn = 2nT0.
Number theoretic universality requires that renormalized coupling constants are rational or at
most algebraic numbers and this is achieved by this discretization since the logarithms of dis-
cretized mass scale appearing in the expressions of renormalized coupling constants reduce to the
form log(2n) = nlog(2) and with a proper choice of the coefficient of logarithm log(2) dependence
disappears so that rational number results.

4.4.2 p-Adic coupling constant evolution

One can wonder how this picture relates to the earlier hypothesis that p-adic length coupling
constant evolution is coded to the hypothesized log(p) normalization of the eigenvalues of the
modified Dirac operator D. There are objections against this normalization. log(p) factors are
not number theoretically favored and one could consider also other dependencies on p. Since the
eigenvalue spectrum of D corresponds to the values of Higgs expectation at points of partonic
2-surface defining number theoretic braids, Higgs expectation would have log(p) multiplicative
dependence on p-adic length scale, which does not look attractive.

Is there really any need to assume this kind of normalization? Could the coupling constant
evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 induce p-adic coupling constant
evolution and explain why p-adic length scales correspond to Lp ∝ √

pR, p ' 2k, R CP2 length
scale? This looks attractive but there is a problem. p-Adic length scales come as powers of

√
2

rather than 2 and the strongly favored values of k are primes and thus odd so that n = k/2 would
be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies
r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies because the
partonic 3-surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their
orbit. For CP2 type vacuum extremals the situation reduces to that for a one-dimensional
random light-like curve in M4. The orbits of Brownian particle would now correspond to
light-like geodesics γ3 at X3. The projection of γ3 to a time=constant section X2 ⊂ X3

would define the 2-D path γ2 of the Brownian particle. The M4 distance r between the end
points of γ2 would be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0

(the full light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would have
T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would
not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via
Tp = L2

p/R0 =
√

pLp, which corresponds to secondary p-adic length scale. For instance,
in the case of electron with p = M127 one would have T127 = .1 second which defines a
fundamental biological rhythm. Neutrinos with mass around .1 eV would correspond to
L(169) ' 5 µm (size of a small cell) and T (169) ' 1.×104 years. A deep connection between
elementary particle physics and biology becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3.
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4. The fundamental role of 2-adicity suggests that the fundamental coupling constant evolution
and p-adic mass calculations could be formulated also in terms of 2-adic thermodynamics.
With a suitable definition of the canonical identification used to map 2-adic mass squared
values to real numbers this is possible, and the differences between 2-adic and p-adic ther-
modynamics are extremely small for large values of for p ' 2k. 2-adic temperature must be
chosen to be T2 = 1/k whereas p-adic temperature is Tp = 1 for fermions. If the canonical
identification is defined as

∑

n≥0

bn2n →
∑

m≥1

2−m+1
∑

(k−1)m≤n<km

bn2n ,

it maps all 2-adic integers n < 2k to themselves and the predictions are essentially same
as for p-adic thermodynamics. For large values of p ' 2k 2-adic real thermodynamics with
TR = 1/k gives essentially the same results as the 2-adic one in the lowest order so that the
interpretation in terms of effective 2-adic/p-adic topology is possible.

5 Number theoretic braids and S-matrix

Number theoretical braids assignable to the partonic 2-surfaces define representations of Galois
groups assignable to them in HFFs of type II1 so that number theoretical quantum numbers be-
come part of physics. This leads to a bundle of ideas about the realization of Langlands program in
TGD framework [27]. The most unexpected implication is that topological quantum computation
including copying of information by braid replication and its transfer by particle exchange could
be present already at elementary particle level.

5.1 Generalization of the notion of imbedding space

The hypothesis that Planck constant is quantized having in principle all possible rational values
but with some preferred values implying algebraically simple quantum phases has been one of
the main ideas of TGD during last years. The mathematical realization of this idea leads to
a profound generalization of the notion of imbedding space obtained by gluing together infinite
number of copies of imbedding space along common 4-dimensional intersection. The hope was
that this generalization could explain charge fractionization but this does not seem to be the case.
This problem led to a further generalization of the imbedding space and this is what I want to
discussed below.

5.1.1 The original view about generalized imbedding space

The original generalization of imbedding space was basically following. Take imbedding space
H = M4 × CP2. Choose submanifold M2 × S2, where S2 is homologically non-trivial geodesic
sub-manifold of CP2. The motivation is that for a given choice of Cartan algebra of Poincare
algebra (translations in time direction and spin quantization axis plus rotations in plane orthogonal
to this plane plus color hypercharge and isospin) this sub-manifold remains invariant under the
transformations leaving the quantization axes invariant.

Form spaces M̂4 = M4\M2 and ĈP 2 = CP2\S2 and their Cartesian product. Both spaces
have a hole of co-dimension 2 so that the first homotopy group is Z. From these spaces one can
construct an infinite hierarchy of factor spaces M̂4/Ga and ĈP 2/Gb, where Ga is a discrete group
of SU(2) leaving quantization axis invariant. In case of Minkowski factor this means that the group
in question acts essentially as a combination reflection and to rotations around quantization axes
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of angular momentum. The generalized imbedding space is obtained by gluing all these spaces
together along M2 × S2.

The hypothesis is that Planck constant is given by the ratio h̄/hbar0 = (n/nb), where ni is the
order of maximal cyclic subgroups of Gi. The hypothesis states also that the covariant metric of
the Minkowski factor is scaled by the factor (na/nb)2. One must take care of this in the gluing
procedure. One can assign to the field bodies describing both self interactions and interactions
between physical systems definite sector of generalized imbedding space characterized partially by
the Planck constant. The phase transitions changing Planck constant correspond to tunnelling
between different sectors of the imbedding space.

5.1.2 Fractionization of quantum numbers is not possible if only factor spaces are
allowed

The original idea was that the proposed modification of the imbedding space could explain natu-
rally phenomena like quantum Hall effect involving fractionization of quantum numbers like spin
and charge. This does not however seem to be the case. Ga×Gb implies just the opposite if these
quantum numbers are assigned with the symmetries of the imbedding space. For instance, quanti-
zation unit for orbital angular momentum becomes na where Zna

is the maximal cyclic subgroup
of Ga.

One can however imagine of obtaining fractionization at the level of imbedding space for space-
time sheets, which are analogous to multi-sheeted Riemann surfaces (say Riemann surfaces associ-
ated with z1/n since the rotation by 2π understood as a homotopy of M4 lifted to the space-time
sheet is a non-closed curve. Continuity requirement indeed allows fractionization of the orbital
quantum numbers and color in this kind of situation.

5.1.3 Both covering spaces and factor spaces are possible

The observation above stimulates the question whether it might be possible in some sense to replace
H or its factors by their multiple coverings.

This is certainly not possible for M4, CP2, or H since their fundamental groups are trivial.
On the other hand, the fixing of quantization axes implies a selection of the sub-space H4 =
M2 × S2 ⊂ M4 ×CP2, where S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2

have fundamental group Z since the codimension of the excluded sub-manifold is equal to two and
homotopically the situation is like that for a punctured plane. The exclusion of these sub-manifolds
defined by the choice of quantization axes could naturally give rise to the desired situation.

The observation above stimulates the question whether it might be possible in some sense to
replace H or its factors by their multiple coverings.

1. This is certainly not possible for M4, CP2, or H since their fundamental groups are trivial.
On the other hand, the fixing of quantization axes implies a selection of the sub-space H4 =
M2 × S2 ⊂ M4 × CP2, where S2 is a geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 =
CP2\S2 have fundamental group Z since the codimension of the excluded sub-manifold is
equal to two and homotopically the situation is like that for a punctured plane. The exclusion
of these sub-manifolds defined by the choice of quantization axes could naturally give rise to
the desired situation.

2. There are two geodesic spheres in CP2. Which one should choose or are both possible?

i) For the homologically non-trivial one corresponding to cosmic strings, the isometry group
is SU(2) ⊂ SU(3). The homologically trivial one S2 corresponds to vacuum extremals and
has isometry group SO(3) ⊂ SU(3). The natural question is which one should choose. At
quantum criticality the value of Planck constant is undetermined. The vacuum extremal
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would be a natural choice from the point of view of quantum criticality since in this case the
value of Planck constant does not matter at all and one would obtain a direct connection
with the vacuum degeneracy.

ii) The choice of the homologically non-trivial geodesic sphere as a quantum critical sub-
manifold would conform with the previous guess that M : N = 4 corresponds to cosmic
strings. It is however questionable whether the ill-definedness of the Planck constant is
consistent with the non-vacuum extremal property of cosmic strings unless one assumes
that for partonic 3-surfaces X3 ⊂ M2 × S2 the effective degrees of freedom reduce to mere
topological ones.

3. The covering spaces in question would correspond to the Cartesian products M̂4
na× ˆCP2nb

of
the covering spaces of M̂4 and ˆCP2 by Zna

and Znb
with fundamental group is Zna

×Znb
. One

can also consider extension by replacing M2 and S2 with its orbit under Ga (say tedrahedral,
octahedral, or icosahedral group). The resulting space will be denoted by M̂4×̂Ga resp.

ˆCP2×̂Gb.

4. One expects the discrete subgroups of SU(2) emerge naturally in this framework if one allows
the action of these groups on the singular sub-manifolds M2 or S2. This would replace
the singular manifold with a set of its rotated copies in the case that the subgroups have
genuinely 3-dimensional action (the subgroups which corresponds to exceptional groups in
the ADE correspondence). For instance, in the case of M2 the quantization axes for angular
momentum would be replaced by the set of quantization axes going through the vertices
of tedrahedron, octahedron, or icosahedron. This would bring non-commutative homotopy
groups into the picture in a natural manner.

5. Also the orbifolds M̂4/Ga × ˆCP2/Gb can be allowed as also the spaces M̂4/Ga × ( ˆCP2×̂Gb)
and (M̂4×̂Ga) × ˆCP2/Gb. Hence the previous framework would generalize considerably by
the allowance of both coset spaces and covering spaces.

There are several non-trivial questions related to the details of the gluing procedure and phase
transition as motion of partonic 2-surface from one sector of the imbedding space to another one.

1. How the gluing of copies of imbedding space at M2 × CP2 takes place? It would seem that
the covariant metric of M4 factor proportional to h̄2 must be discontinuous at the singular
manifold since only in this manner the idea about different scaling factor of M4 metric
can make sense. This is consistent with the identical vanishing of Chern-Simons action in
M2 × S2.

2. One might worry whether the phase transition changing Planck constant means an instan-
taneous change of the size of partonic 2-surface in M4 degrees of freedom. This is not the
case. Light-likeness in M2 × S2 makes sense only for surfaces X1 ×D2 ⊂ M2 × S2, where
X1 is light-like geodesic. The requirement that the partonic 2-surface X2 moving from one
sector of H to another one is light-like at M2×S2 irrespective of the value of Planck constant
requires that X2 has single point of M2 as M2 projection. Hence no sudden change of the
size X2 occurs.

3. A natural question is whether the phase transition changing the value of Planck constant
can occur purely classically or whether it is analogous to quantum tunnelling. Classical
non-vacuum extremals of Chern-Simons action have two-dimensional CP2 projection to ho-
mologically non-trivial geodesic sphere S2

I . The deformation of the entire S2
I to homologically

trivial geodesic sphere S2
II is not possible so that only combinations of partonic 2-surfaces

with vanishing total homology charge (Kähler magnetic charge) can in principle move from
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sector to another one, and this process involves fusion of these 2-surfaces such that CP2

projection becomes single homologically trivial 2-surface. A piece of a non-trivial geodesic
sphere S2

I of CP2 can be deformed to that of S2
II using 2-dimensional homotopy flattening the

piece of S2 to curve. If this homotopy cannot be chosen to be light-like, the phase transitions
changing Planck constant take place only via quantum tunnelling. Obviously the notions of
light-like homotopies (cobordisms) and classical light-like homotopies (cobordisms) are very
relevant for the understanding of phase transitions changing Planck constant.

5.1.4 Do factor spaces and coverings correspond to the two kinds of Jones inclusions?

What could be the interpretation of these two kinds of spaces?

1. Jones inclusions appear in two varieties corresponding to M : N < 4 and M : N = 4 and one
can assign a hierarchy of subgroups of SU(2) with both of them. In particular, their maximal
Abelian subgroups Zn label these inclusions. The interpretation of Zn as invariance group is
natural for M : N < 4 and it naturally corresponds to the coset spaces. For M : N = 4 the
interpretation of Zn has remained open. Obviously the interpretation of Zn as the homology
group defining covering would be natural.

2. M : N = 4 should correspond to the allowance of cosmic strings and other analogous objects.
Does the introduction of the covering spaces bring in cosmic strings in some controlled
manner? Formally the subgroup of SU(2) defining the inclusion is SU(2) would mean that
states are SU(2) singlets which is something non-physical. For covering spaces one would
however obtain the degrees of freedom associated with the discrete fiber and the degrees
of freedom in question would not disappear completely and would be characterized by the
discrete subgroup of SU(2).

For anyons the non-trivial homotopy of plane brings in non-trivial connection with a flat
curvature and the non-trivial dynamics of topological QFTs. Also now one might expect
similar non-trivial contribution to appear in the spinor connection of M̂2×̂Ga and ĈP 2×̂Gb.
In conformal field theory models non-trivial monodromy would correspond to the presence
of punctures in plane.

3. For factor spaces the unit for quantum numbers like orbital angular momentum is multiplied
by na resp. nb and for coverings it is divided by this number. These two kind of spaces are
in a well defined sense obtained by multiplying and dividing the factors of Ĥ by Ga resp. Gb

and multiplication and division are expected to relate to Jones inclusions with M : N < 4
and M : N = 4, which both are labelled by a subset of discrete subgroups of SU(2).

4. The discrete subgroups of SU(2) with fixed quantization axes possess a well defined multipli-
cation with product defined as the group generated by forming all possible products of group
elements as elements of SU(2). This product is commutative and all elements are idempo-
tent and thus analogous to projectors. Trivial group G1, two-element group G2 consisting
of reflection and identity, the cyclic groups Zp, p prime, and tedrahedral, octahedral, and
icosahedral groups are the generators of this algebra.

By commutativity one can regard this algebra as an 11-dimensional module having natural
numbers as coefficients (”rig”). The trivial group G1, two-element group G2¡ generated by
reflection, and tedrahedral, octahedral, and icosahedral groups define 5 generating elements
for this algebra. The products of groups other than trivial group define 10 units for this
algebra so that there are 11 units altogether. The groups Zp generate a structure analogous
to natural numbers acting as analog of coefficients of this structure. Clearly, one has effec-
tively 11-dimensional commutative algebra in 1-1 correspondence with the 11-dimensional
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”half-lattice” N11 (N denotes natural numbers). Leaving away reflections, one obtains N7.
The projector representation suggests a connection with Jones inclusions. An interesting
question concerns the possible Jones inclusions assignable to the subgroups containing in-
finitely manner elements. Reader has of course already asked whether dimensions 11, 7 and
their difference 4 might relate somehow to the mathematical structures of M-theory with 7
compactified dimensions. One could introduce generalized configuration space spinor fields
in the configuration space labelled by sectors of H with given quantization axes. By intro-
ducing Fourier transform in N11 one would formally obtain an infinite-component field in
11-D space.

5. How do the Planck constants associated with factors and coverings relate? One might argue
that Planck constant defines a homomorphism respecting the multiplication and division
(when possible) by Gi. If so, then Planck constant in units of h̄0 would be equal to na/nb for
Ĥ/Ga×Gb option and nb/na for Ĥ×̂(Ga×Gb) with obvious formulas for hybrid cases. This
option would put M4 and CP2 in a very symmetric role and allow much more flexibility in
the identification of symmetries associated with large Planck constant phases.

5.1.5 Is factorizable QFT in M2 associated with quantum criticality?

2-D QFT:s in M2 are almost trivial and generalize topological QFT:s associated with braids.
Planck constant depends on the sector of generalized imbedding space and is ill-defined in M2×S2

II

which thus represents quantum critical sub-manifold and must be a vacuum extremal. TGD should
reduce to a pure topological QFT for partons moving in this sub-manifold. Since partons are 2-
dimensional, one would have essentially light-like geodesics as allowed solutions of field equations
and thus classical theory of free massless particles. Hence factorizing QFT would be a natural
description for the quantum critical dynamics at quantum criticality. This conforms also with the
idea that intentional action takes place at quantum criticality.

5.2 Physical representations of Galois groups

It would be highly desirable to have concrete physical realizations for the action of finite Galois
groups. TGD indeed provides two kinds of realizations of this kind. For both options there are
good hopes about the unification of number theoretical and geometric Galois programs obtained
by replacing permutations with braiding homotopies and by a discretization of the continuous
situation to a finite number theoretic braids having finite Galois groups as automorphisms.

5.2.1 Number theoretical braids and the representations of finite Galois groups as
outer automorphisms of braid group algebra

Number theoretical braids [E1, C1, C2] are in a central role in the formulation of quantum TGD
based on general philosophical ideas which might apply to both physics and mathematical cognition
and, one might hope, also to a good mathematics.

An attractive idea inspired by the notion of the number theoretical braid is that the symmetric
group Sn might act on roots of a polynomial represented by the strands of braid and could thus
be replaced by braid group.

The basic philosophy underlying quantum TGD is the notion of finite resolution, both the finite
resolution of quantum measurement and finite cognitive resolution [C1, C2]. The basic implication
is discretization at space-time level and finite-dimensionality of all mathematical structures which
can be represented in the physical world. At space-time level the discretization means that the data
involved with the definition of S-matrix comes from a subset of a discrete set of points in the in-
tersection of real and p-adic variants of partonic 2-surface obeying same algebraic equations. Note
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that a finite number of braids could be enough to code for the information needed to reconstruct
the entire partonic 2-surface if it is given by polynomial or rational function having coefficients
as algebraic numbers. Entire configuration space of 3-surfaces would be discretized in this pic-
ture. Also the reduction of the infinite braid to a finite one would conform with the spontaneous
symmetry breaking S∞ to diagonally imbedded finite Galois group imbedded diagonally.

1. Two objections

Langlands correspondence assumes the existence of finite-dimensional representations of Gal(Q/Q).
In the recent situation this encourages the idea that the restrictions of mathematical cognition al-
low to realize only the representations of Gal(Q/Q) reducing in some sense to representations for
finite Galois groups. There are two counter arguments against the idea.

1. It is good to start from a simple abelian situation. The abelianization of G(A/Q) must give
rise to multiplicative group of adeles defined as Ẑ =

∏
p Z×p where Z×p corresponds to the

multiplicative group of invertible p-adic integers consisting of p-adic integers having p-adic
norm equal to one. This group results as the inverse limit containing the information about
subgroup inclusion hierarchies resulting as sequences Z×/(1+pZ)× ⊂ Z×/(1+p2Z)× ⊂ .. and
expressed in terms factor groups of multiplicative group of invertible p-adic integers. Z∞/A∞
must give the group

∏
p Z×p as maximal abelian subgroup of Galois group. All smaller abelian

subgroups of S∞ would correspond to the products of subgroups of Ẑ× coming as Z×p /(1 +
pnZ)×. Representations of finite cyclic Galois groups would be obtained by representing
trivially the product of a commutator group with a subgroup of Ẑ. Thus one would obtain
finite subgroups of the maximal abelian Galois group at the level of representations as effective
Galois groups. The representations would be of course one-dimensional.

One might hope that the representations of finite Galois groups could result by a reduction
of the representations of S∞ to G = S∞/H where H is normal subgroup of S∞. Schreier-
Ulam theorem [55] however implies that the only normal subgroup of S∞ is the alternating
subgroup A∞. Since the braid group B∞ as a special case reduces to S∞ there is no hope of
obtaining finite-dimensional representations except abelian ones.

2. The identification of Gal(Q/Q) = S∞ is not consistent with the finite-dimensionality in the
case of complex representations. The irreducible unitary representations of Sn are in one-one
correspondence with partitions of n objects. The direct numerical inspection based on the
formula for the dimension of the irreducible representation of Sn in terms of Yang tableau
[56] suggests that the partitions for which the number r of summands differs from r = 1 or
r = n (1-dimensional representations) quite generally have dimensions which are at least of
order n. If d-dimensional representations corresponds to representations in GL(d,C), this
means that important representations correspond to dimensions d →∞ for S∞.

Both these arguments would suggest that Langlands program is consistent with the identifi-
cation Gal(F, F ) = S∞ only if the representations of Gal(Q,Q) reduce to those for finite Galois
subgroups via some kind of symmetry breaking.

2. Diagonal imbedding of finite Galois group to S∞ as a solution of problems

The idea is to imbed the Galois group acting as inner automorphisms diagonally to the m-
fold Cartesian power of Sn imbedded to S∞. The limit m → ∞ gives rise to outer automorphic
action since the resulting group would not be contained in S∞. Physicist might prefer to speak
about number theoretic symmetry breaking Gal(Q/Q) → G implying that the representations are
irreducible only in finite Galois subgroups of Gal(Q/Q). The action of finite Galois group G is
indeed analogous to that of global gauge transformation group which belongs to the completion of
the group of local gauge transformations. Note that G is necessarily finite.
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5.2.2 Representation of finite Galois groups as outer automorphism groups of HFFs

Any finite group G has a representation as outer automorphisms of a hyper-finite factor of type II1

(briefly HFF in the sequel) and this automorphism defines sub-factor N ⊂M with a finite value of
index M : N [60]. Hence a promising idea is that finite Galois groups act as outer automorphisms
of the associated hyper-finite factor of type II1.

More precisely, sub-factors (containing Jones inclusions as a special case) N ⊂M are charac-
terized by finite groups G acting on elements of M as outer automorphisms and leave the elements
of N invariant whereas finite Galois group associated with the field extension K/L act as automor-
phisms of K and leave elements of L invariant. For finite groups the action as outer automorphisms
is unique apart from a conjugation in von Neumann algebra. Hence the natural idea is that the
finite subgroups of Gal(Q/Q) have outer automorphism action in group algebra of Gal(Q/Q) and
that the hierarchies of inclusions provide a representation for the hierarchies of algebraic exten-
sions. Amusingly, the notion of Jones inclusion was originally inspired by the analogy with field
extensions [60]!

It must be emphasized that the groups defining sub-factors can be extremely general and can
represent much more than number theoretical information understood in the narrow sense of the
word. Even if one requires that the inclusion is determined by outer automorphism action of
group G uniquely, one finds that any amenable, in particular compact [59], group defines a unique
sub-factor by outer action [60]. It seems that practically any group works if uniqueness condition
is given up.

The TGD inspired physical interpretation is that compact groups would serve as effective
gauge groups defining measurement resolution by determining the measured quantum numbers.
Hence the physical states differing by the action of N elements which are G singlets would not
be indistinguishable from each other in the resolution used. The physical states would transform
according to the finite-dimensional representations in the resolution defined by G.

The possibility of Lie groups as groups defining inclusions raises the question whether hyper-
finite factors of type II1 could mimic any gauge theory and one might think of interpreting gauge
groups as Galois groups of the algebraic structure of this kind of theories. Also Kac-Moody algebras
emerge naturally in this framework as will be discussed, and could also have an interpretation as
Galois algebras for number theoretical dynamical systems obeying dynamics dictated by conformal
field theory. The infinite hierarchy of infinite rationals in turn suggests a hierarchy of groups S∞ so
that even algebraic variants of Lie groups could be interpreted as Galois groups. These arguments
would suggest that HFFs might be kind of Universal Math Machines able to mimic any respectable
mathematical structure.

5.2.3 Number theoretic braids and unification of geometric and number theoretic
Langlands programs

The notion of number theoretic braid has become central in the attempts to fuse real physics
and p-adic physics to single coherent whole. Number theoretic braid leads to the discretization
of quantum physics by replacing the stringy amplitudes defined over curves of partonic 2-surface
with amplitudes involving only data coded by points of number theoretic braid. The discretization
of quantum physics could have counterpart at the level of geometric Langlands program [28, 37],
whose discrete version would correspond to number theoretic Galois groups associated with the
points of number theoretic braid. The extension to braid group would mean that the global
homotopic information is not lost.

1. Number theoretic braids belong to the intersection of real and p-adic partonic surface

The points of number theoretic braid belong to the intersection of the real and p-adic variant
of partonic 2-surface consisting of rationals and algebraic points in the extension used for p-adic
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numbers. The points of braid have same projection on an algebraic point of the geodesic sphere
of S2 ⊂ CP2 belonging to the algebraic extension of rationals considered (the reader willing to
understand the details can consult [C1]).

There are two different geodesic spheres in CP2 and the homologically trivial geodesic sphere
S2

II is the most natural choice from the point of view of the generalized imbedding space since
M2 × S2

II , which defines the intersection of all sectors of H, is vacuum extremal so that ill-
definedness of Planck constant does not matter. Note that also the M4 part of the metric is
discontinuous at M2 × S2

II .
One can argue that algebraicity condition is not strong enough and gives too many points

unless one introduces a cutoff in some manner. Since TQFT like theory can naturally assigned
with the partonic 2-surfaces in M2 × S2

II , the natural identification of the intersection points of
number theoretical braids with δM4

±×CP2 would be as the intersection of the 2-D CP2 projection
of the partonic 2-surface in δM4

± × CP2 with S2
II . In the generic case the intersection would

consist of discrete points and for non-vacuum extremals this would certainly be the case. The
intersection should consist of algebraic points allowing also p-adic interpretation: the condition
that CP2 projection is an algebraic surface is a necessary condition for this.

The points of braid are obtained as solutions of polynomial equation and thus one can assign
to them a Galois group permuting the points of the braid. In this case finite Galois group could
be realized as left or right translation or conjugation in S∞ or in braid group.

To make the notion of number theoretic braid more concrete, suppose that the complex coordi-
nate w of δM4

± is expressible as a polynomial of the complex coordinate z of CP2 geodesic sphere
and the radial light-like coordinate r of δM4

± is obtained as a solution of polynomial equation
P (r, z, w) = 0. By substituting w as a polynomial w = Q(z, r) of z and r this gives polynomial
equation P (r, z, Q(z, r)) = 0 for r for a given value of z. Only real roots can be accepted. Local
Galois group (in a sense different as it is used normally in literature) associated with the algebraic
point of S2 defining the number theoretical braid is thus well defined.

If the partonic 2-surface involves all roots of an irreducible polynomial, one indeed obtains a
braid for each point of the geodesic sphere S2 ⊂ CP2. In this case the action of Galois group is
naturally a braid group action realized as the action on induced spinor fields and configuration
space spinors.

The choice of the points of braid as points common to the real and p-adic partonic 2-surfaces
would be unique so that the obstacle created by the fact that the finite Galois group as function of
point of S2 fluctuates wildly (when some roots become rational Galois group changes dramatically:
the simplest example is provided by y−x2 = 0 for which Galois group is Z2 when y is not a square
of rational and trivial group if y is rational).

2. Modified Dirac operator assigns to partonic 2-surface a unique prime p which could define
l-adic representations of Galois group

The overall scaling of the eigenvalue spectrum of the modified Dirac operator assigns to the
partonic surface a unique p-adic prime p which physically corresponds to the p-adic length scale
which appears in the discrete coupling constant evolution [C1, C5]. One can solve the roots of the
the resulting polynomial also in the p-adic number field associated with the partonic 2-surface by
the modified Dirac equation and find the Galois group of the extension involved. The p-adic Galois
group, known as local Galois group in literature, could be assigned to the p-adic variant of partonic
surface and would have naturally l-adic representation, most naturally in the p-adic variant of the
group algebra of S∞ or B∞ or equivalently in the p-adic variant of infinite-dimensional Clifford
algebra. There are however physical reasons to believe that infinite-dimensional Clifford algebra
does not depend on number field. Restriction to an algebraic number based group algebra therefore
suggests itself. Hence, if one requires that the representations involve only algebraic numbers, these
representation spaces might be regarded as equivalent.
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3. Problems

There are however problems.

1. The triviality of the action of Galois group on the entire partonic 2-surface seems to destroy
the hopes about genuine representations of Galois group.

2. For a given partonic 2-surface there are several number theoretic braids since there are several
algebraic points of geodesic sphere S2 at which braids are projected. What happens if the
Galois groups are different? What Galois group should one choose?

A possible solution to both problems is to assign to each braid its own piece X2
k of the partonic

2-surface X2 such that the deformations X2 can be non-trivial only in X2
k . This means separation

of modular degrees of freedom to those assignable to X2
k and to ”center of mass” modular degrees

of freedom assignable to the boundaries between X2
k . Only the piece X2

k associated with the kth

braid would be affected non-trivially by the Galois group of braid. The modular invariance of the
conformal field theory however requires that the entire quantum state is modular invariant under
the modular group of X2. The analog of color confinement would take place in modular degrees
of freedom. Note that the region containing braid must contain single handle at least in order to
allow representations of SL(2, C) (or Sp(2g, Z) for genus g).

As already explained, in the general case only the invariance under the subgroup Γ0(N) [35] of
the modular group SL(2, Z) can be assumed for automorphic representations of GL(2, R) [30, 28,
26]. This is due to the fact that there is a finite set of primes (prime ideals in the algebra of integers),
which are ramified [30]. Ramification means that their decomposition to a product of prime ideals
of the algebraic extension of Q contains higher powers of these prime ideals: p → (

∏
k Pk)e with

e > 1. The congruence group is fixed by the integer N =
∏

k pnk known as conductor coding the
set of exceptional primes which are ramified.

The construction of modular forms in terms of representations of SL(2, R) suggests that it is
possible to replace Γ0(N) by the congruence subgroup Γ(N), which is normal subgroup of SL(2, R)
so that G1 = SL(2, Z)/Γ is group. This would allow to assign to individual braid regions carrying
single handle well-defined G1 quantum numbers in such a manner that entire state would be G1

singlet.
Physically this means that the separate regions of the partonic 2-surface each containing one

braid strand cannot correspond to quantum states with full modular invariance. Elementary
particle vacuum functionals [F1] defined in the moduli space of conformal equivalence classes of
partonic 2-surface must however be modular invariant, and the analog of color confinement in
modular degrees of freedom would take place.

5.3 Galois groups and definition of vertices

The idea about reducing the construction of S-matrix to the level of number theoretic braids means
a deviation from stringy picture. One could imagine that strings are replaced by number theoretic
braids in the sense that the finite measurement resolution represented by the inclusion implies
that the complex coordinate z of the geodesic sphere of CP2 becomes effectively non-commutative
variable and the modes of the induced spinor field depending on z commute only at the points
defining the number theoretic braid [C1, C2, A9].

The construction of S-matrix in braid picture involves two pieces.

1. The first piece of S-matrix should corresponds to an S-matrix characterizing braiding and
would be assigned with each number theoretic braid associated with incoming and outgoing
partons.
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2. The challenge is to understand what happens in generalized vertices identifiable as partonic
2-surfaces at which incoming and outgoing partonic 3-surfaces meet along their ends. The
unitary isomorphism between HFFs of type II1 already discussed is the first principle answer
to this question whereas braid picture should allow to gain detailed insights about the vertex.

5.3.1 The time evolution of number theoretic braids

Consider first on the general level what can happen to the number theoretic braids in the dynamics
defined by light-like randomness of partonic 2-surfaces.

1. Assume that the number theoretic braid at δM4
± × CP2 is defined in terms of zeros of a

polynomial defining the light-like radial coordinate associated with the partonic 2-surface at
a given algebraic point of the geodesic sphere of CP2 belonging to intersection of real and
p-adic partonic 2-surface. This polynomial is assumed to be irreducible.

2. Light-likeness of the partonic 3-surfaces is the only constraint to the time evolution of the
partonic 2-surface. It is however not quite clear what this really means.

i) First of all, it is not clear how to define the dynamics of braiding if braid consists of
algebraic points. Continuous motion for braid points on S2 does not respect the algebraic
character of these points unless on assumes that the preferred coordinates of CP2 suffer a
suitable color rotation during braiding guaranteing that coordinates remain constant. Also
the continuous motion of the strands of braid seems to be inconsistent with the property of
being number theoretic braid. It would seem that number theoretic picture forces to replace
continuous homotopy behind braiding with a discrete one, kind of series of discrete snapshot
about the orbit of braid points defined by the algebraic intersection points with p-adic parton
orbit. This of course is consistent with the fact that braid group is discrete.

ii) This means that during the time evolution from δM4
± to the partonic 2-surface defining the

vertex the partonic 2-surface could evolve in such a manner that the number of braid strands
is not preserved. Even if the polynomial representation is preserved by the time evolution
it could happen that the pair of real roots coincides and transforms to a complex pair of
roots so that Galois group changes. Polynomial could also split to a product of irreducible
polynomials. It could even occur that the expressibility of the light-like radial coordinate r
as a polynomial is not preserved in intermediate states. This would mean disappearance or
appearance of braid strands. There would be however an upper bound for the number of
strands. This picture would be consistent with the replacement of braid with tangle.

iii) Even more dramatic changes can happen if polynomial is given up in the ”virtual”
intermediate states during the travel of partonic 2-surface. If this is the case then the
degree of polynomial could increase during the propagation. Hence the number of strands
of braid could change. This picture is not favored by the very attractive idea that even
the configuration space (the world of classical worlds) reduces to a discrete space by the
assumption that surfaces are algebraic for a suitable choice of coordinates with coefficients
of rational functions assumed to be rational numbers.

5.3.2 Does DNA replication have counterpart at the level of fundamental physics?

The fundamental question is what happens in the vertices represented by the partonic 2-surface?
The study of the 3-vertex which might well represent the generic situation makes it clear that
the incoming braid is replicated in a manner very much analogous to the replication of DNA.
Braid replication would make it possible to make copies of classical representations of number
theoretic information. Quantum representation of information by irreducible representations of
Galois group would not be replicable since each incoming braid would correspond to its own
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irreducible representation and the choice of these representations would not be a fully deterministic
process.

This process would mean that partons/elementary particles might be much more complex
objects than they are though to be and would in some sense possess the analog of genome. In [E9]
DNA has been proposed to act as topological quantum computer using braids. Also elementary
particles could be seen as a kind of quantum computers and their ”genome” would code at least
the initial data for for the topological quantum computation program. Information processing
involves besides computation also copying of data and its transfer. Particle interaction vertices
would realize the copying of data and particle exchanges its communication whereas quantum
computation would be carried by parton with quantum program identified with its execution
(light-like 3-surfaces can be regarded either as states or processes).

5.3.3 Connection with TGD inspired model of genetic code

One of the TGD inspired models of genetic code suggests that the connection with genetic code
and DNA replication might be much deeper than one might think first.

1. The model for genetic code discussed in [L4] assumes that codons are labelled by 64 5-adic
integers with no vanishing 5-ary digit (these integers n are in the range [31, 124]. The crucial
observation is that the number of primes in this range is 20, the number of aminoacids.

2. An assumption inspired by the symmetries of the code is that 5-adic thermodynamics dy-
namics for the partitions of the 16 2-letter codons (two first nucleotides) labelled by integers
n2) in the interval [6, 24] determines the p-adic prime labelling corresponding amino-adic as
the prime for which the number theoretic entropy associated with the partition function for
which Hamiltonian depends only on the number of summands in the partition of n2) =

∑
nk

is minimal (and negative!).

3. The model of code actually combines a couple of other approaches to the genetic code so that
very strong constraints result. In particular, the map of codons to aminoacids is determined
to a rather high degree. The numerical scanning of 20 per cent of a huge number of available
candidates allows two solutions to the conditions for genetic code.

4. The basic question concerns the interpretation of the thermodynamics for the partitions of
n2). One possible interpretation is based on the observation is that the irreducible represen-
tations of symmetric group Sn are in one-one correspondence with the partitions of n objects.
Hence the thermodynamics could correspond to a thermodynamics for irreducible represen-
tations of Sn2) associated with a number theoretic braid with n2) strands and corresponding
to the generic Galois group Sn2)).

5.3.4 Fusion rules number theoretically

The idea that partonic 2-surfaces decompose into regions, one for each number theoretic braid, and
that the number theoretic braids define representations of Galois groups permuting the strands of
the braid as automorphisms in HFFs of type II1 suggests a fresh approach to the understanding
of vertices. Kind of fusion rules would certainly be in question and the the interpretation as
representations of Galois groups might allow to deduce information about the fusion rules using
symmetry arguments.

The first thing to notice is that in the vertex the number theoretic braids coincide so that the
Galois groups G associated with incoming and outgoing braids are identical. Only in the situation
in which polynomial defining G becomes reducible it might occur that some of incoming lines
corresponds to a group which is product of subgroups of G but this situation is not expected to
be generic.
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Suppose that the number theoretic braids define irreducible projective representations of the
Galois group G associated with the braid in HFF of type II1 as outer automorphisms via diagonal
imbedding of G. In vertex one expects that fusion rules for these representations mean extraction
of singlet from the tensor product of these representations. This suggest a picture very similar
to the fusion of representations of SU(2)q in the fusion rules of WZW theory which also can be
understood in terms of braiding. If one accepts generalized McKay correspondence [27], then the
fusion rules for Galois group could have representation in terms of fusion groups for Lie group
associated with it by generalized McKay correspondence.

5.4 Could McKay correspondence and Jones inclusions relate to each
other?

The understanding of Langlands correspondence for general reductive Lie groups in TGD frame-
work seems to require some physical mechanism allowing the emergence of these groups in TGD
based physics. The physical idea would be that quantum dynamics of TGD is able to emulate
the dynamics of any gauge theory or even stringy dynamics of conformal field theory having
Kac-Moody type symmetry and that this emulation relies on quantum deformations induced by
finite measurement resolution described in terms of Jones inclusions of sub-factors characterized
by group G leaving elements of sub-factor invariant. Finite measurement resolution would would
result simply from the fact that only quantum numbers defined by the Cartan algebra of G are
measured.

There are good reasons to expect that infinite Clifford algebra has the capacity needed to
realize representations of an arbitrary Lie group. It is indeed known that that any quantum group
characterized by quantum parameter which is root of unity or positive real number can be assigned
to Jones inclusion [60]. For q = 1 this would gives ordinary Lie groups. In fact, all amenable groups
define unique sub-factor and compact Lie groups are amenable ones.

It was so called McKay correspondence [64] which originally stimulated the idea about TGD as
an analog of Universal Turing machine able to mimic both ADE type gauge theories and theories
with ADE type Kac-Moody symmetry algebra. This correspondence and its generalization might
also provide understanding about how general reductive groups emerge. In the following I try to
cheat the reader to believe that the tensor product of representations of SU(2) Lie algebras for
Connes tensor powers of M could induce ADE type Lie algebras as quantum deformations for
the direct sum of n copies of SU(2) algebras This argument generalizes also to the case of other
compact Lie groups.

5.4.1 About McKay correspondence

McKay correspondence [64] relates discrete finite subgroups of SU(2) ADE groups. A simple
description of the correspondences is as follows [64].

1. Consider the irreps of a discrete subgroup G ⊂ SU(2) which correspond to irreps of G and can
be obtained by restricting irreducible representations of SU(2) to those of G. The irreducible
representations of SU(2) define the nodes of the graph.

2. Define the lines of graph by forming a tensor product of any of the representations appearing
in the diagram with a doublet representation which is always present unless the subgroup
is 2-element group. The tensor product regarded as that for SU(2) representations gives
representations j − 1/2, and j + 1/2 which one can decompose to irreducibles of G so that
a branching of the graph can occur. Only branching to two branches occurs for subgroups
yielding extended ADE diagrams. For the linear portions of the diagram the spins of corre-
sponding SU(2) representations increase linearly as .., j, j + 1/2, j + 1, ...
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One obtains extended Dynkin diagrams of ADE series representing also Kac-Moody algebras giving
An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are obtained in case that subgroups are infinite. The
Dynkin diagrams of non-simply laced groups Bn (SO(2n + 1)), Cn (symplectic group Sp(2n) and
quaternionic group Sp(n)), and exceptional groups G2 and F4 are not obtained.

ADE Dynkin diagrams labelling Lie groups instead of Kac-Moody algebras and having one
node less, do not appear in this context but appear in the classification of Jones inclusions for
M : N < 4. As a matter fact, ADE type Dynkin diagrams appear in very many contexts as one
can learn from John Baez’s This Week’s Finds [65].

1. The classification of integral lattices in Rn having a basis of vectors whose length squared
equals 2

2. The classification of simply laced semisimple Lie groups.

3. The classification of finite sub-groups of the 3-dimensional rotation group.

4. The classification of simple singularities . In TGD framework these singularities could be
assigned to origin for orbifold CP2/G, G ⊂ SU(2).

5. The classification of tame quivers.

5.4.2 Principal graphs for Connes tensor powers M
The thought provoking findings are following.

1. The so called principal graphs characterizing M : N = 4 Jones inclusions for G = SU(2)
are extended Dynkin diagrams characterizing ADE type affine (Kac-Moody) algebras. Dn is
possible only for n ≥ 4.

2. M : N < 4 Jones inclusions correspond to ordinary ADE type diagrams for a subset of
simply laced Lie groups (all roots have same length) An (SU(n)), D2n (SO(2n)), and E6

and E8. Thus D2n+1 (SO(2n + 2)) and E7 are not allowed. For instance, for G = S3 the
principal graph is not D3 Dynkin diagram.

The conceptual background behind principal diagram is necessary if one wants to understand
the relationship with McKay correspondence.

1. The hierarchy of higher commutations defines an invariant of Jones inclusion N ⊂ M.
Denoting by N ′ the commutant of N one has sequences of horizontal inclusions defined as
C = N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ ... and C = M′ ∩M ⊂M′ ∩M1 ⊂ .... There is also
a sequence of vertical inclusions M′ ∩Mk ⊂ N ′ ∩Mk. This hierarchy defines a hierarchy of
Temperley-Lieb algebras [62] assignable to a finite hierarchy of braids. The commutants in the
hierarchy are direct sums of finite-dimensional matrix algebras (irreducible representations)
and the inclusion hierarchy can be described in terms of decomposition of irreps of kth level
to irreps of (k− 1)th level irreps. These decomposition can be described in terms of Bratteli
diagrams [64, 63].

2. The information provided by infinite Bratteli diagram can be coded by a much simpler bi-
partite diagram having a preferred vertex. For instance, the number of 2k-loops starting
from it tells the dimension of kth level algebra. This diagram is known as principal graph.

Principal graph emerges also as a concise description of the fusion rules for Connes tensor
powers of M.

65



1. It is natural to decompose the Connes tensor powers [64]Mk = M⊗N ...⊗NM to irreducible
M−M, N −M, M−N , or N − N bi-modules. If M : N is finite this decomposition
involves only finite number of terms. The graphical representation of these decompositions
gives rise to Bratteli diagram.

2. If N has finite depth the information provided by Bratteli diagram can be represented in
nutshell using principal graph. The edges of this bipartite graph connect M−N vertices
to vertices describing irreducible N − N representations resulting in the decomposition of
M−N irreducibles. If this graph is finite, N is said to have finite depth.

5.4.3 A mechanism assigning to tensor powers Jones inclusions ADE type gauge
groups and Kac-Moody algebras

The proposal made for the first time in [A9] is that in M : N < 4 case it is possible to construct
ADE representations of gauge groups or quantum groups and in M : N = 4 using the additional
degeneracy of states implied by the multiple-sheeted cover H → H/Ga×Gb associated with space-
time correlates of Jones inclusions. Either Ga or Gb would correspond to G. In the following this
mechanism is articulated in a more refined manner by utilizing the general properties of generators
of Lie-algebras understood now as a minimal set of elements of algebra from which the entire algebra
can be obtained by repeated commutation operator (I have often used ” Lie algebra generator” as
an synonym for ”Lie algebra element”). This set is finite also for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.

1. McKay correspondence for subgroups of G (M : N = 4) resp. its variants (M : N < 4) and
its counterpart for Jones inclusions means that finite-dimensional irreducible representations
of allowed G ⊂ SU(2) label both the Cartan algebra generators and the Lie (Kac-Moody)
algebra generators of t+ and t− in the decomposition g = h ⊕ t+ ⊕ t−, where h is the Lie
algebra of maximal compact subgroup.

2. Second observation is related to the generators of Lie-algebras and their quantum counter-
parts (see Appendix for the explicit formulas for the generators of various algebras consid-
ered). The observation is that each Cartan algebra generator of Lie- and quantum group
algebras, corresponds to a triplet of generators defining an SU(2) sub-algebra. The Car-
tan algebra of affine algebra contains besides Lie group Cartan algebra also a derivation d
identifiable as an infinitesimal scaling operator L0 measuring the conformal weight of the
Kac-Moody generators. d is exceptional in that it does not give rise to a triplet. It cor-
responds to the preferred node added to the Dynkin diagram to get the extended Dynkin
diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers of SU(2) Lie algebras
representations?

The ADE type symmetry groups could result as an effect of finite quantum resolution described
by inclusions of HFFs in TGD inspired quantum measurement theory.

1. The description of finite resolution typically leads to quantization since complex rays of state
space are replaced as N rays. Hence operators, which would commute for an ideal resolution
cease to do so. Therefore the algebra SU(2) ⊗ ... ⊗ SU(2) characterized by n mutually
commuting triplets, where n is the number of copies of SU(2) algebra in the original situation
and identifiable as quantum algebra appearing in M tensor powers with M interpreted as N
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module, could suffer quantum deformation to a simple Lie algebra with 3n Cartan algebra
generators. Also a deformation to a quantum group could occur as a consequence.

2. This argument makes sense also for discrete groups G ⊂ SU(2) since the representations
of G realized in terms of configuration space spinors extend to the representations of SU(2)
naturally.

3. Arbitrarily high tensor powers of M are possible and one can wonder why only finite-
dimensional Lie algebra results. The fact that N has finite depth as a sub-factor means
that the tensor products in tensor powers of N are representable by a finite Dynkin diagram.
Finite depth could thus mean that there is a periodicity involved: the kn tensor powers
decomposes to representations of a Lie algebra with 3n Cartan algebra generators. Thus the
additional requirement would be that the number of tensor powers of M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M
By quantum classical correspondence there should exist space-time correlate for the formation

of tensor powers of M regarded as N module. A concrete space-time realization for this kind of
situation in TGD would be based on n-fold cyclic covering of H implied by the H → H/Ga ×Gb

bundle structure in the case of say Gb. The sheets of the cyclic covering would correspond to
various factors in the n-fold tensor power of SU(2) and one would obtain a Lie algebra, affine
algebra or its quantum counterpart with n Cartan algebra generators in the process naturally.
The number n for space-time sheets would be also a space-time correlate for the finite depth of N
as a factor.

Configuration space spinors could provide fermionic representations of G ⊂ SU(2). The Dynkin
diagram characterizing tensor products of representations of G ⊂ SU(2) with doublet represen-
tation suggests that tensor products of doublet representations associated with n sheets of the
covering could realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G would not give rise
to an SU(2) sub-algebra in ADE Lie algebra and would correspond to the scaling generator. For
ordinary Dynkin diagram representing gauge group algebra scaling operator would be absent and
therefore also the exceptional node. Thus the difference between (M : N = 4) and (M : N < 4)
cases would be that in the Kac-Moody group would reduce to gauge group M : N < 4 because
Kac-Moody central charge k and therefore also Virasoro central charge resulting in Sugawara
construction would vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of extended Dynkin diagrams
in (M : N = 4) case. Do finite subgroups G ⊂ SU(2) associated with extended Dynkin diagrams
appear also in this case. The formal analog for H → Ga × Gb bundle structure would be H →
H/Ga × SU(2). This would mean that the geodesic sphere of CP2 would define the fiber. The
notion of number theoretic braid meaning a selection of a discrete subset of algebraic points of the
geodesic sphere of CP2 suggests that SU(2) actually reduces to its subgroup G also in this case.

5. Why Kac-Moody central charge can be non-vanishing only for M : N = 4?

From the physical point of view the vanishing of Kac-Moody central charge for M : N < 4 is
easy to understand. If parton corresponds to a homologically non-trivial geodesic sphere, space-
time surface typically represents a string like object so that the generation of Kac-Moody central
extension would relate directly to the homological non-triviality of partons. For instance, cosmic
strings are string like objects of form X2 × Y 2, where X2 is minimal surface of M2 and Y 2 is
a holomorphic sub-manifold of CP2 reducing to a homologically non-trivial geodesic sphere in
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the simplest situation. A conjecture that deserves to be shown wrong is that central charge k is
proportional/equal to the absolute value of the homology (Kähler magnetic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-dimensional Lie
groups [64]. The argument above makes sense also for discrete subgroups of more general compact
Lie groups H since also they define unique sub-factors. In this case, algebras having Cartan algebra
with nk generators, where n is the dimension of Cartan algebra of H, would emerge in the process.
Thus there are reasons to believe that TGD could emulate practically any dynamics having gauge
group or Kac-Moody type symmetry. An interesting question concerns the interpretation of non-
ADE type principal graphs associated with subgroups of SU(2).

7. Flavor groups of hadron physics as a support for HFF?

The deformation assigning to an n-fold tensor power of representations of Lie group G with
k-dimensional Cartan algebra a representation of a Lie group with nk-dimensional Cartan algebra
could be also seen as a dynamically generated symmetry. If quantum measurement is characterized
by the choice of Lie group G defining measured quantum numbers and defining Jones inclusion
characterizing the measurement resolution, the measurement process itself would generate these
dynamical symmetries. Interestingly, the flavor symmetry groups of hadron physics cannot be
justified from the structure of the standard model having only electro-weak and color group as
fundamental symmetries. In TGD framework flavor group SU(n) could emerge naturally as a
fusion of n quark doublets to form a representation of SU(n).

5.5 Farey sequences, Riemann hypothesis, tangles, and TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent pairs in
Farey sequence characterize so called rational 2-tangles. In TGD framework Farey sequences relate
very closely to dark matter hierarchy, which inspires ”Platonia as the best possible world in the
sense that cognitive representations are optimal” as the basic variational principle of mathematics.
This variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than braids,
are considered. One can assign to a given rational tangle a rational number a/b and the tangles
labelled by a/b and c/d are equivalent if ad − bc = ±1 holds true. This means that the rationals
in question are neighboring members of Farey sequence. Very light-hearted guesses about possible
generalization of these invariants to the case of general N -tangles are made.

5.5.1 Farey sequences

Some basic facts about Farey sequences [75] demonstrate that they are very interesting also from
TGD point of view.

1. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the conditions
n ≤ N ordered in an increasing sequence.

2. Two subsequent terms a/b and c/d in FN satisfy the condition ad − bc = 1 and thus define
and element of the modular group SL(2, Z).

3. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (10)
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Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes one has
φ(p) = 1 so that in the transition from p to p + 1 the length of Farey sequence increases by
one unit by the addition of q = 1/(p + 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum
phases qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy of Jones
inclusions, quantum groups, and in TGD context with quantum measurement theory with finite
measurement resolution and the hierarchy of Planck constants involving the generalization of the
imbedding space. Also the recent TGD inspired ideas about the hierarchy of subgroups of the
rational modular group with subgroups labelled by integers N and in direct correspondence with
the hierarchy of quantum critical phases [C1] would naturally relate to the Farey sequence.

5.5.2 Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Suppose the
terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N − n

|FN | .

In other words, dn,N is the difference between the n:th term of the N :th Farey sequence, and the
n:th member of a set of the same number of points, distributed evenly on the unit interval. Franel
and Landau proved that both of the following statements

∑

n=1,...,|FN |
|dn,N | = O(Nr) for any r > 1/2 ,

∑

n=1,...,|FN |
d2

n,N = O(Nr) for any r > 1 . (11)

are equivalent with Riemann hypothesis.
One could say that RH would guarantee that the numbers of Farey sequence provide the best

possible approximate representation for the evenly distributed rational numbers n/|FN |.

5.5.3 Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

1. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |), which
are also roots of unity. The statement would be that the algebraic phases defined by Farey
sequence give the best possible approximate representation for the phases exp(in2π/|FN |)
with evenly distributed phase angle.

2. In TGD framework the phase factors defined by FN corresponds to the set of quantum phases
corresponding to Jones inclusions labelled by q = exp(i2π/n), n ≤ N , and thus to the N
lowest levels of dark matter hierarchy. There are actually two hierarchies corresponding to
M4 and CP2 degrees of freedom and the Planck constant appearing in Schrödinger equa-
tion corresponds to the ratio na/nb defining quantum phases in these degrees of freedom.
Zna×nb

appears as a conformal symmetry of ”dark” partonic 2-surfaces and with very general
assumptions this implies that there are only in TGD Universe [F1, C1].
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3. The fusion of physics associated with various number fields to single coherent whole requires
algebraic universality. In particular, the roots of unity, which are complex algebraic numbers,
should define approximations to continuum of phase factors. At least the S-matrix associ-
ated with p-adic-to-real transitions and more generally p1 → p2 transitions between states
for which the partonic space-time sheets are p1- resp. p2-adic can involve only this kind
of algebraic phases. One can also say that cognitive representations can involve only alge-
braic phases and algebraic numbers in general. For real-to-real transitions and real-to-padic
transitions U-matrix might be non-algebraic or obtained by analytic continuation of alge-
braic U-matrix. S-matrix is by definition diagonal with respect to number field and similar
continuation principle might apply also in this case.

4. The subgroups of the hierarchy of subgroups of the modular group with rational matrix
elements are labelled by integer N and relate naturally to the hierarchy of Farey sequences.
The hierarchy of quantum critical phases is labelled by integers N with quantum phase
transitions occurring only between phases for which the smaller integer divides the larger
one [C1].

5.5.4 Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hypothesis
in TGD framework. RH would be equivalent to the statement that the Farey numbers provide
best possible approximation to the set of rationals k/|FN | or to the statement that the roots
of unity contained by FN define the best possible approximation for the roots of unity defined
as exp(ik2π/|FN |) with evenly spaced phase angles. The roots of unity allowed by the lowest N
levels of the dark matter hierarchy allows the best possible approximate representation for algebraic
phases represented exactly at |FN |:th level of hierarchy.

A stronger statement would be that the Platonia, where RH holds true would be the best
possible world in the sense that algebraic physics behind the cognitive representations would allow
the best possible approximation hierarchy for the continuum physics (both for numbers in unit
interval and for phases on unit circle). Platonia with RH would be cognitive paradise.

One could see this also from different view point. ”Platonia as the cognitively best possible
world” could be taken as the ”axiom of all axioms”: a kind of fundamental variational principle of
mathematics. Among other things it would allow to conclude that RH is true: RH must hold true
either as a theorem following from some axiomatics or as an axiom in itself.

5.5.5 Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [76] about rational 2-tangles having commutative sum
and product allowing to map them to rationals is very interesting from TGD point of view. The
illustrations of the article are beautiful and make it easy to get the gist of various ideas. The
theorem of the article states that equivalent rational tangles giving trivial tangle in the product
correspond to subsequent Farey numbers a/b and c/d satisfying ad − bc = ±1 so that the pair
defines element of the modular group SL(2,Z).

1. Rational 2-tangles

1. The basic observation is that 2-tangles are 2-tangles in both ”s- and t-channels”. Product
and sum can be defined for all tangles but only in the case of 2-tangles the sum, which in this
case reduces to product in t-channel obtained by putting tangles in series, gives 2-tangle. The
so called rational tangles are 2-tangles constructible by using addition of ±[1] on left or right
of tangle and multiplication by ±[1] on top or bottom. Product and sum are commutative
for rational 2-tangles but the outcome is not a rational 2-tangle in the general case. One can
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also assign to rational 2-tangle its negative and inverse. One can map 2-tangle to a number
which is rational for rational tangles. The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define
so called elementary rational 2-tangles.

2. In the general case the sum of M− and N−tangles is M +N−2-tangle and combines various
N−tangles to a monoidal structure. Tensor product like operation giving M + N -tangle
looks to me physically more natural than the sum.

3. The reason why general 2-tangles are non-commutative although 2-braids obviously commute
is that 2-tangles can be regarded as sequences of N−tangles with 2-tangles appearing only
as the initial and final state: N is actually even for intermediate states. Since N > 2-
braid groups are non-commutative, non-commutativity results. It would be interesting to
know whether braid group representations have been used to construct representations of
N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article about
equivalence of tangles might somehow generalize to the N > 2 case.

1. Could the commutativity of tangle product allow to characterize the N > 2 generalizations
of rational 2-tangles. The commutativity of product would be a space-time correlate for
the commutativity of the S-matrices defining time like entanglement between the initial and
final quantum states assignable to the N -tangle. For 2-tangles commutativity of the sum
would have an analogous interpretation. Sum is not a very natural operation for N-tangles
for N > 2. Commutativity means that the representation matrices defined as products of
braid group actions associated with the various intermediate states and acting in the same
representation space commute. Only in very special cases one can expect commutativity for
tangles since commutativity is lost already for braids.

2. The representations of 2-tangles should involve the subgroups of N -braid groups of intermedi-
ate braids identifiable as Galois groups of N :th order polynomials in the realization as number
theoretic tangles. Could non-commutative 2-tangles be characterized by algebraic numbers
in the extensions to which the Galois groups are associated? Could the non-commutativity
reflect directly the non-commutativity of Galois groups involved? Quite generally one can
ask whether the invariants should be expressible using algebraic numbers in the extensions
of rationals associated with the intermediate braids.

3. Rational 2-tangles can be characterized by a rational number obtained by a projective identi-
fication [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1),Z) acts. Equivalence
means that the columns [a, b]T and [c, d]T combine to form element of SL(2,Z) and thus defin-
ing a modular transformation. Could more general 2-tangles have a similar representation
but in terms of algebraic integers?

4. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-spinors
[a1

i , a
2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios ak

i /a
2(N−1)
i ≤ 1 matter? Could

equivalence for them mean that the N − 1 spinors combine to form N − 1 + N − 1 columns
of SL(2(N − 1), Z) matrix. Could N -tangles quite generally correspond to collections of
projective N − 1 spinors having as components algebraic integers and could ad − bc = ±1
criterion generalize? Note that the modular group for surfaces of genus g is SL(2g,Z) so that
N − 1 would be analogous to g and 1 ≤ N ≥ 3- braids would correspond to g ≤ 2 Riemann
surfaces.
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5. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q)
labelled by N (the generator τ → τ + 2 of modular group is replaced with τ → τ + 2/N).
What might be the role of these subgroups and corresponding subgroups of SL(2(N−1), Q).
Could they arise in ”anyonization” when one considers quantum group representations of
2-tangles with twist operation represented by an N :th root of unity instead of phase U
satisfying U2 = 1?

5.5.6 How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -tangles could
be be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N:th order polynomial and
if one allows time evolutions of partonic 2-surface leading to the disappearance or appearance of
real roots N−tangles become possible. This however means continuous evolution of roots so that
the coefficients of polynomials defining the partonic 2-surface can be rational only in initial and
final state but not in all intermediate ”virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

1. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic
2-surfaces have genus g > 0 the handles can become knotted and linked and one obtains
besides ordinary knots and links more general knots and links in which circle is replaced by
figure eight and its generalizations obtained by adding more circles (eyeglasses for N−eyed
creatures).

2. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather than
only braids. Tangles made of strands with fixed ends would result by allowing spherical
partons elongate to long strands with fixed ends. DNA tangles would the basic example,
and are discussed also in the article. DNA sequences to which I have speculatively assigned
invisible (dark) braid structures might be seen in this context as space-like ”written language
representations” of genetic programs represented as number theoretic braids.

6 Appendix

6.1 Hecke algebra and Temperley-Lieb algebra

Braid group is accompanied by several algebras. For Hecke algebra, which is particular case of
braid algebra, one has

en+1enen+1 = enen+1en ,

e2
n = (t− 1)en + t . (12)

The algebra reduces to that for symmetric group for t = 1.
Hecke algebra can be regarded as a discrete analog of Kac Moody algebra or loop algebra with

G replaced by Sn. This suggests a connection with Kac-Moody algebras and imbedding of Galois
groups to Kac-Moody group. t = pn corresponds to a finite field. Fractal dimension t = M : N
relates naturally to braid group representations: fractal dimension of quantum quaternions might
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be appropriate interpretation. t=1 gives symmetric group. Infinite braid group could be seen as a
quantum variant of Galois group for algebraic closure of rationals.

Temperley-Lieb algebra assignable with Jones inclusions of hyper-finite factors of type II1 with
M : N < 4 is given by the relations

en+1enen + 1 = en+1

enen+1en = en ,

e2
n = ten , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (13)

The conditions involving three generators differ from those for braid group algebra since en are
now proportional to projection operators. An alternative form of this algebra is given by

en+1enen + 1 = ten+1

enen+1en = ten ,

e2
n = en = e∗n , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (14)

This representation reduces to that for Temperley-Lieb algebra with obvious normalization
of projection operators. These algebras are somewhat analogous to function fields but the value
of coordinate is fixed to some particular values. An analogous discretization for function fields
corresponds to a formation of number theoretical braids.

6.2 Some examples of bi-algebras and quantum groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and some basic constructions
related to quantum groups.

6.2.1 Simplest bi-algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with coefficients in field k. xi

can be regarded as points of a set. The algebra Hom(k(x1, ..., xn), A) of algebra homomorphisms
k(x1, ..., xn) → A can be identified as An since by the homomorphism property the images f(xi)
of the generators x1, ...xn determined the homomorphism completely. Any commutative algebra
A can be identified as the Hom(k[x], A) with a particular homomorphism corresponding to a line
in A determined uniquely by an element of A.

The matrix algebra M(2) can be defined as the polynomial algebra k(a, b, c, d). Matrix multi-
plication can be represented universally as an algebra morphism ∆ from from M2 = k(a, b, c, d) to
M⊗2

2 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′) to k(a, b, c, d) in matrix form as

∆
(

a b
c d

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A) for any commutative
algebra A.

M(2), GL(2) and SL(2) provide standard examples about bi-algebras. SL(2) can be defined as
a commutative algebra by dividing free polynomial algebra k(a, b, c, d) spanned by the generators
a, b, c, d by the ideal det − 1 = ad − bc − 1 = 0 expressing that the determinant of the matrix is
one. In the matrix representation µ and η are defined in obvious manner and µ gives powers of
the matrix
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A =
(

a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SL(2) as
(

∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗

(
a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize the action of ∆ on
the generators a, b, c, d of the algebra. For instance, one has ∆(a) = a → a ⊗ a + b ⊗ c. The
resulting algebra is both commutative and co-commutative.

SL(2)q can be defined as a Hopf algebra by dividing the free algebra generated by elements
a, b, c, d by the relations

ba = qab , db = qbd ,
ca = qac , dc = qcd ,
bc = cb , ad− da = (q−1 − 1)bc ,

and the relation
detq = ad− q−1bc = 1

stating that the quantum determinant of SL(2)q matrix is one.
µ, η, ∆, ε are defined as in the case of SL(2). Antipode S is defined by

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
.

The relations above guarantee that it defines quantum inverse of A. For q an nth root of unity,
S2n = id holds true which signals that these parameter values are somehow exceptional. This
result is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple (A,B, C,D) in R4 satisfying
the relations defining the point of SLq(2). One can say that R-points provide representations of
the universal quantum algebra SLq(2).

6.2.2 Quantum group Uq(sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2), can be constructed by
applying Drinfeld’s quantum double construction (to avoid confusion note that the quantum Hopf
algebra associated with SL(2) is the quantum analog of a commutative algebra generated by powers
of a 2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H, X±] = ±2X± . (15)

Uq(sl(2)) allows co-algebra structure given by
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∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±,H ,

S(1) = 1 , ε(1) = 1 .
(16)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+,H} {1, X−, hH} define the
Hopf algebra H and its dual H? in Drinfeld’s construction. h could be called Planck’s constant
vanishes at the classical limit. Note that H? reduces to {1, X−} at this limit. Quantum deformation
parameter q is given by exp(2h). The duality map ? : H → H? reads as

a → a? , ab = (ab)? = b?a? ,
1 → 1 , H → H? = hH , X+ → (X+)? = hX− .

(17)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H

q−q−1 , [H, X±] = ±2X± . (18)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .
(19)

When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2
∑∞

n=0
(1−q−2)n

[n]q ! q
n(1−n)

2 q
nH
2 Xn

+ ⊗ q−
nH
2 Xn

− . (20)

When q is m:th root of unity the q-factorial [n]q! vanishes for n ≥ m and the expansion does not
make sense.

For q not a root of unity the representation theory of quantum groups is essentially the same
as of ordinary groups. When q is mth root of unity, the situation changes. For l = m = 2n nth

powers of generators span together with the Casimir operator a sub-algebra commuting with the
whole algebra providing additional numbers characterizing the representations. For l = m = 2n+1
same happens for mth powers of Lie-algebra generators. The generic representations are not fully
reducible anymore. In the case of Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain
conditions on q it is possible to decouple the higher representations from the theory. Physically
the reduction of the number of representations to a finite number means a symmetry analogous
to a gauge symmetry. The phenomenon resembles the occurrence of null vectors in the case of
Virasoro and Kac Moody representations and there indeed is a deep connection between quantum
groups and Kac-Moody algebras [52].

One can wonder what is the precise relationship between Uq(sl(2) and SLq(2) which both are
quantum groups using loose terminology. The relationship is duality. This means the existence of
a morphism x → Ψ(x) Mq(2) → U?

q defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on Uq ×Mq(2),
which is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)
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are satisfied. It is enough to find Ψ(x) for the generators x = A,B, C, D of Mq(2) and show that
the duality conditions are satisfied. The representation

ρ(E) =
(

0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =
(

A(u) B(u)
C(u) D(u)

)

of arbitrary element u of Uq(sl(2) defines for elements in U?
q . It is easy to guess that A(u), B(u), C(u), D(u),

which can be regarded as elements of U?
q , can be regarded also as R points that is images of the

generators a, b, c, d of SLq(2) under an algebra morphism SLq(2) → U?
q .

6.2.3 General semisimple quantum group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-simple Lie algebra and is
discussed in detail in [52]. The construction relies on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n× n matrix satisfying the following conditions:
i) A is indecomposable, that is does not reduce to a direct sum of matrices.
ii) aij ≤ 0 holds true for i < j.
iii) aij = 0 is equivalent with aij = 0.
A can be normalized so that the diagonal components satisfy aii = 2.
The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij

i ejki ,

kifj = q
−aij

i ejki , eifj − fjei = δij
ki−k−1

i

qi−q−1
i

,
(21)

and so called Serre relations

∑1−aij

l=0 (−1)l

[
1− aij

l

]

qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,

∑1−aij

l=0 (−1)l

[
1− aij

l

]

qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(22)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice in this case.
Comultiplication is given by

∆(ki) = ki ⊗ ki , (23)
∆(ei) = ei ⊗ ki + 1⊗ ei , (24)
∆(fi) = fi ⊗ 1 + k−1

i ⊗ 1 . (25)
(26)

The action of antipode S is defined as

S(ei) = −eik
−1
i , S(fi) = −kifi , S(ki) = −k−1

i . (27)
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6.2.4 Quantum affine algebras

The construction of Drinfeld and Jimbo generalizes also to the case of untwisted affine Lie algebras,
which are in one-one correspondence with semisimple Lie algebras. The representations of quan-
tum deformed affine algebras define corresponding deformations of Kac-Moody algebras. In the
following only the basic formulas are summarized and the reader not familiar with the formalism
can consult a more detailed treatment can be found in [52].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) = 0 and aijaji ≥ 4 (no
summation) hold true. There always exists a diagonal matrix D such that B = DA is symmetric
and defines symmetric bilinear degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l + 1 vertices (so that Cartan matrix has
one null eigenvector). The diagrams of semisimple Lie-algebras are sub-diagrams of affine algebras.
From the (l + 1)× (l + 1) Cartan matrix of an untwisted affine algebra Â one can recover the l× l
Cartan matrix of A by dropping away 0:th row and column.

For instance, the algebra A1
1, which is affine counterpart of SL(2), has Cartan matrix aij

A =
(

2 −2
−2 2

)

with a vanishing determinant.
Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1) generators ei, fi, ki

(i = 0, 1, .., l) satisfying the relations of Eq. 22 for Cartan matrix of G(1). Affine quantum group
is obtained by adding to Uq(Ĝl) a derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (28)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.

2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix G(1)
l is the Kac Moody

algebra associated with the group G obtained as the central extension of the corresponding loop
algebra. The loop algebra is defined as

L(G) = G ⊗ C
[
t, t−1

]
, (29)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coefficients. The Lie bracket

is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (30)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding form in L(Gl) as
(x⊗ P, y ⊗Q) = (x, y)PQ.

A two-cocycle on L(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (31)

where the residue of a Laurent is defined as Res(
∑

n antn) = a−1. The two-cocycle satisfies the
conditions
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Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (32)

The two-cocycle defines the central extension of loop algebra L(Gl) to Kac Moody algebra L(Gl)⊗
Cc, where c is a new central element commuting with the loop algebra. The new bracket is defined
as [, ]+Ψ(, )c. The algebra L̃(Gl) is defined by adding the derivation d which acts as td/dt measuring
the conformal weight.

The standard basis for Kac Moody algebra and corresponding commutation relations are given
by

Jx
n = x⊗ tn ,

[Jx
n , Jy

m] = J
[x,y]
n+m + nδm+n,0c . (33)

The finite dimensional irreducible representations of G defined representations of Kac Moody
algebra with a vanishing central extension c = 0. The highest weight representations are charac-
terized by highest weight vector |v〉 such that

Jx
n |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (34)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quantum double construc-
tion. The construction of generators uses almost the same basic formulas as the construction of
semi-simple algebras. The construction involves the automorphism Dt : Uq(G̃l) ⊗ C

[
t, t−1

] →
Uq(G̃l)⊗ C

[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(35)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (36)

where the ∆(a) is the co-product defined by the same general formula as applying in the case of
semi-simple Lie algebras. The universal R-matrix is given by

R(t) = (Dt ⊗ 1)R , (37)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(38)
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The infinite-dimensional representations of affine algebra give representations of Kac-Moody alge-
bra when one restricts the consideration to generations ei, fi, ki, i > 0.
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